L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.5 + 0.866i)4-s + 6-s + i·8-s + (0.5 − 0.866i)9-s + (0.5 + 0.866i)11-s + (0.866 + 0.5i)12-s + i·13-s + (−0.5 + 0.866i)16-s + (0.866 − 0.5i)17-s + (0.866 − 0.5i)18-s + (−0.5 + 0.866i)19-s + i·22-s + (0.5 + 0.866i)24-s + ⋯ |
L(s) = 1 | + (0.866 + 0.5i)2-s + (0.866 − 0.5i)3-s + (0.5 + 0.866i)4-s + 6-s + i·8-s + (0.5 − 0.866i)9-s + (0.5 + 0.866i)11-s + (0.866 + 0.5i)12-s + i·13-s + (−0.5 + 0.866i)16-s + (0.866 − 0.5i)17-s + (0.866 − 0.5i)18-s + (−0.5 + 0.866i)19-s + i·22-s + (0.5 + 0.866i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 805 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.578 + 0.815i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 805 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.578 + 0.815i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(3.039277779 + 1.570414875i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.039277779 + 1.570414875i\) |
\(L(1)\) |
\(\approx\) |
\(2.194409132 + 0.6583293809i\) |
\(L(1)\) |
\(\approx\) |
\(2.194409132 + 0.6583293809i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + iT \) |
| 17 | \( 1 + (0.866 - 0.5i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.866 - 0.5i)T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + (0.866 + 0.5i)T \) |
| 53 | \( 1 + (-0.866 + 0.5i)T \) |
| 59 | \( 1 + (0.5 + 0.866i)T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 67 | \( 1 + (0.866 - 0.5i)T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + (0.866 - 0.5i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + iT \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.98226668512663887312032522798, −21.333431169300971433498564635690, −20.65834690676164545464257506813, −19.80113092532588267343713811478, −19.320884632163827206925960006213, −18.51033697231230183605740758593, −17.14122213241793236008036749095, −16.13949665440974934694415022415, −15.44371032090723106531595627347, −14.62957336160180215544182276649, −14.11682638770428596798007438502, −13.14162023067116035564252540088, −12.61203873598469625211294545262, −11.32933619544945940680911960075, −10.68128864386015318446469189696, −9.86427789082175202022745746030, −8.94467359133966871416522292827, −8.01421422616262542219572666150, −6.90989522264517095918090290118, −5.75089273034464121610470418406, −4.99232743113073931668299371685, −3.82309514798553200282777773084, −3.30927370880220119207494081440, −2.36188792563090551800235038388, −1.1534294368601825673364070647,
1.67615315384955461478588662875, 2.39828603421980123810190292122, 3.70080000761736411938145266551, 4.16299342296535817018021261988, 5.46842571053247718143591607971, 6.49225858000880910855078525655, 7.261689015205050699019399602825, 7.86227004352516132872442982293, 8.972265949949343903759789738585, 9.6897292593820276440310720320, 11.135706865162203717007368709227, 12.26114769488177997289116741809, 12.50062322581027709495968092518, 13.65078086776397101708912703423, 14.29850837079183388878079627802, 14.79359916460945429221943834637, 15.67621352779217373670115820932, 16.65982372062319935181803831433, 17.361253448817803110835300674691, 18.49992269171374808365714601174, 19.17038256357541624468239838776, 20.27942650214855659521421393908, 20.7508951781446165856045335150, 21.50148668008161013925831691013, 22.55112405583281218564519198333