| L(s) = 1 | + (0.888 − 0.458i)2-s + (0.786 − 0.618i)3-s + (0.580 − 0.814i)4-s + (0.415 − 0.909i)6-s + (0.142 − 0.989i)8-s + (0.235 − 0.971i)9-s + (−0.888 − 0.458i)11-s + (−0.0475 − 0.998i)12-s + (0.654 + 0.755i)13-s + (−0.327 − 0.945i)16-s + (0.995 − 0.0950i)17-s + (−0.235 − 0.971i)18-s + (−0.995 − 0.0950i)19-s − 22-s + (−0.5 − 0.866i)24-s + ⋯ |
| L(s) = 1 | + (0.888 − 0.458i)2-s + (0.786 − 0.618i)3-s + (0.580 − 0.814i)4-s + (0.415 − 0.909i)6-s + (0.142 − 0.989i)8-s + (0.235 − 0.971i)9-s + (−0.888 − 0.458i)11-s + (−0.0475 − 0.998i)12-s + (0.654 + 0.755i)13-s + (−0.327 − 0.945i)16-s + (0.995 − 0.0950i)17-s + (−0.235 − 0.971i)18-s + (−0.995 − 0.0950i)19-s − 22-s + (−0.5 − 0.866i)24-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 805 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.451 - 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 805 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.451 - 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.671601804 - 2.720059973i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.671601804 - 2.720059973i\) |
| \(L(1)\) |
\(\approx\) |
\(1.764356806 - 1.280318382i\) |
| \(L(1)\) |
\(\approx\) |
\(1.764356806 - 1.280318382i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 7 | \( 1 \) |
| 23 | \( 1 \) |
| good | 2 | \( 1 + (0.888 - 0.458i)T \) |
| 3 | \( 1 + (0.786 - 0.618i)T \) |
| 11 | \( 1 + (-0.888 - 0.458i)T \) |
| 13 | \( 1 + (0.654 + 0.755i)T \) |
| 17 | \( 1 + (0.995 - 0.0950i)T \) |
| 19 | \( 1 + (-0.995 - 0.0950i)T \) |
| 29 | \( 1 + (0.415 - 0.909i)T \) |
| 31 | \( 1 + (0.928 - 0.371i)T \) |
| 37 | \( 1 + (-0.235 + 0.971i)T \) |
| 41 | \( 1 + (-0.959 - 0.281i)T \) |
| 43 | \( 1 + (0.142 + 0.989i)T \) |
| 47 | \( 1 + (0.5 - 0.866i)T \) |
| 53 | \( 1 + (-0.981 - 0.189i)T \) |
| 59 | \( 1 + (-0.327 + 0.945i)T \) |
| 61 | \( 1 + (-0.786 - 0.618i)T \) |
| 67 | \( 1 + (-0.0475 + 0.998i)T \) |
| 71 | \( 1 + (0.841 + 0.540i)T \) |
| 73 | \( 1 + (-0.580 + 0.814i)T \) |
| 79 | \( 1 + (0.981 - 0.189i)T \) |
| 83 | \( 1 + (0.959 - 0.281i)T \) |
| 89 | \( 1 + (0.928 + 0.371i)T \) |
| 97 | \( 1 + (0.959 + 0.281i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.5456798147860145555920079246, −21.58764447391081803808584450301, −20.9762106919215107530177565243, −20.48663684374000327158585454596, −19.57517270341452935035583003270, −18.544091654617879764374474848971, −17.47508205717654158214523464355, −16.55648881281393204723190253238, −15.72045099430417104181389145490, −15.286270413978951828213111085134, −14.42878522124165486737927101043, −13.72502934802636261726137853673, −12.87291998511456227333615020471, −12.23557755946420094776680271590, −10.74091749961866514760414181442, −10.4119672215701402592582132332, −9.035082157452032530882061260183, −8.108664340485099596002844275446, −7.62808658227871039614595750231, −6.39027465464612043690967101374, −5.329249205689324077049342976301, −4.66235979057973457782597370549, −3.57875291622337576972559687956, −2.94230268589894819331333798749, −1.87378293528492821669750159400,
1.00062876790331453381424506988, 2.080586737174760710498553714021, 2.918994336192004863413635455676, 3.76866412693070164178953570564, 4.769467695792948580118490548741, 6.00976683684087248933794154448, 6.61456553650990714986422722804, 7.75997726232500931718982113232, 8.55566509733424620622636785944, 9.70126309652334149391854930670, 10.51184093726937845826123803747, 11.59511076718309810035689011021, 12.25926522767197009097408550429, 13.283661626881646302679842901561, 13.616529234874158016907276141435, 14.477400433197083101023154668961, 15.286718778926423697398345011, 16.01317936019944219448528047545, 17.149721736336366661619913387217, 18.58295370542560842473952872872, 18.82120618691180879534751181051, 19.59677354778961918876223485870, 20.67130530361742936199299807860, 21.04234641295054500522058227429, 21.72725791121806011971299260262