| L(s) = 1 | + (−0.961 + 0.274i)2-s + (0.788 + 0.615i)3-s + (0.849 − 0.527i)4-s + (0.934 + 0.355i)5-s + (−0.926 − 0.375i)6-s + (−0.672 + 0.740i)8-s + (0.243 + 0.969i)9-s + (−0.996 − 0.0853i)10-s + (0.910 − 0.414i)11-s + (0.994 + 0.106i)12-s + (0.949 + 0.315i)13-s + (0.518 + 0.855i)15-s + (0.443 − 0.896i)16-s + (−0.656 − 0.754i)17-s + (−0.5 − 0.866i)18-s + (0.5 − 0.866i)19-s + ⋯ |
| L(s) = 1 | + (−0.961 + 0.274i)2-s + (0.788 + 0.615i)3-s + (0.849 − 0.527i)4-s + (0.934 + 0.355i)5-s + (−0.926 − 0.375i)6-s + (−0.672 + 0.740i)8-s + (0.243 + 0.969i)9-s + (−0.996 − 0.0853i)10-s + (0.910 − 0.414i)11-s + (0.994 + 0.106i)12-s + (0.949 + 0.315i)13-s + (0.518 + 0.855i)15-s + (0.443 − 0.896i)16-s + (−0.656 − 0.754i)17-s + (−0.5 − 0.866i)18-s + (0.5 − 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 343 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.393 + 0.919i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 343 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.393 + 0.919i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.995019886 + 1.316026787i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.995019886 + 1.316026787i\) |
| \(L(1)\) |
\(\approx\) |
\(1.181509274 + 0.4592297215i\) |
| \(L(1)\) |
\(\approx\) |
\(1.181509274 + 0.4592297215i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| good | 2 | \( 1 + (-0.961 + 0.274i)T \) |
| 3 | \( 1 + (0.788 + 0.615i)T \) |
| 5 | \( 1 + (0.934 + 0.355i)T \) |
| 11 | \( 1 + (0.910 - 0.414i)T \) |
| 13 | \( 1 + (0.949 + 0.315i)T \) |
| 17 | \( 1 + (-0.656 - 0.754i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (-0.263 + 0.964i)T \) |
| 29 | \( 1 + (0.967 + 0.253i)T \) |
| 31 | \( 1 + (0.988 + 0.149i)T \) |
| 37 | \( 1 + (0.325 - 0.945i)T \) |
| 41 | \( 1 + (-0.284 + 0.958i)T \) |
| 43 | \( 1 + (-0.672 - 0.740i)T \) |
| 47 | \( 1 + (-0.481 - 0.876i)T \) |
| 53 | \( 1 + (0.942 + 0.335i)T \) |
| 59 | \( 1 + (-0.687 + 0.725i)T \) |
| 61 | \( 1 + (-0.117 - 0.993i)T \) |
| 67 | \( 1 + (0.365 - 0.930i)T \) |
| 71 | \( 1 + (0.967 - 0.253i)T \) |
| 73 | \( 1 + (-0.481 + 0.876i)T \) |
| 79 | \( 1 + (0.826 - 0.563i)T \) |
| 83 | \( 1 + (-0.991 - 0.127i)T \) |
| 89 | \( 1 + (0.640 + 0.768i)T \) |
| 97 | \( 1 + (-0.623 + 0.781i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.824551421322189357700032282920, −24.160429296232166253890401408036, −22.66058015165690427481254368211, −21.46396874487344015485854672818, −20.64836809067744385797428369051, −20.10587614216781156893131480160, −19.16119982271541644897489847025, −18.23057216549560318071148349161, −17.63544592014216929517776356670, −16.75818307439609652762972193538, −15.60743715314336744262535824613, −14.524849506920681378306323273571, −13.52521062386250474090236428644, −12.63379741656504679763645775275, −11.80966074570890455172587291048, −10.37403017716611359820311178957, −9.63261796615847673980680748132, −8.64059619364616467193891425294, −8.1482956835046151212671212475, −6.653503502970249457187714996488, −6.18146802645845893573545127683, −4.09934632802299921735396613224, −2.83030989534358762193721773315, −1.73225891724580407794125567346, −1.02614053435420998251316569958,
1.2038485642096065299221849432, 2.35400813348445916475185447821, 3.401614302414946206335758353085, 5.01648564213272152449909564347, 6.26182415828377882008063482803, 7.09861439833952209933305032078, 8.45502036975368599717880714103, 9.161031521132727392192634078602, 9.78329648349737504890566043529, 10.824644801471387921997968292907, 11.60588090536560489500994984087, 13.62062927062370521445946707545, 13.96218337470450182650111842982, 15.12898306101106306380575298853, 15.908894170649196711185769725255, 16.76890556572627880876500636020, 17.78531837745076897102097093594, 18.518827920844548116340522468327, 19.61096955457196165021277996746, 20.17576638293351681808274324903, 21.31725963214839283482312344135, 21.789629051877760061087903584559, 23.11235895187428399649971438309, 24.579619014890128238226633679655, 24.99279114812174759159281849000