| L(s) = 1 | + (0.996 − 0.0853i)2-s + (−0.536 + 0.843i)3-s + (0.985 − 0.170i)4-s + (0.656 − 0.754i)5-s + (−0.462 + 0.886i)6-s + (0.967 − 0.253i)8-s + (−0.424 − 0.905i)9-s + (0.589 − 0.807i)10-s + (−0.0106 − 0.999i)11-s + (−0.385 + 0.922i)12-s + (0.926 − 0.375i)13-s + (0.284 + 0.958i)15-s + (0.942 − 0.335i)16-s + (−0.999 − 0.0213i)17-s + (−0.5 − 0.866i)18-s + (−0.5 + 0.866i)19-s + ⋯ |
| L(s) = 1 | + (0.996 − 0.0853i)2-s + (−0.536 + 0.843i)3-s + (0.985 − 0.170i)4-s + (0.656 − 0.754i)5-s + (−0.462 + 0.886i)6-s + (0.967 − 0.253i)8-s + (−0.424 − 0.905i)9-s + (0.589 − 0.807i)10-s + (−0.0106 − 0.999i)11-s + (−0.385 + 0.922i)12-s + (0.926 − 0.375i)13-s + (0.284 + 0.958i)15-s + (0.942 − 0.335i)16-s + (−0.999 − 0.0213i)17-s + (−0.5 − 0.866i)18-s + (−0.5 + 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 343 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.962 - 0.269i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 343 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.962 - 0.269i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.241931830 - 0.3082222425i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.241931830 - 0.3082222425i\) |
| \(L(1)\) |
\(\approx\) |
\(1.792829615 - 0.06890685884i\) |
| \(L(1)\) |
\(\approx\) |
\(1.792829615 - 0.06890685884i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| good | 2 | \( 1 + (0.996 - 0.0853i)T \) |
| 3 | \( 1 + (-0.536 + 0.843i)T \) |
| 5 | \( 1 + (0.656 - 0.754i)T \) |
| 11 | \( 1 + (-0.0106 - 0.999i)T \) |
| 13 | \( 1 + (0.926 - 0.375i)T \) |
| 17 | \( 1 + (-0.999 - 0.0213i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (0.201 - 0.979i)T \) |
| 29 | \( 1 + (-0.949 - 0.315i)T \) |
| 31 | \( 1 + (0.0747 + 0.997i)T \) |
| 37 | \( 1 + (0.481 + 0.876i)T \) |
| 41 | \( 1 + (0.0320 + 0.999i)T \) |
| 43 | \( 1 + (0.967 + 0.253i)T \) |
| 47 | \( 1 + (0.687 + 0.725i)T \) |
| 53 | \( 1 + (-0.814 + 0.580i)T \) |
| 59 | \( 1 + (-0.881 + 0.471i)T \) |
| 61 | \( 1 + (-0.961 + 0.274i)T \) |
| 67 | \( 1 + (0.826 + 0.563i)T \) |
| 71 | \( 1 + (-0.949 + 0.315i)T \) |
| 73 | \( 1 + (0.687 - 0.725i)T \) |
| 79 | \( 1 + (0.955 + 0.294i)T \) |
| 83 | \( 1 + (0.159 - 0.987i)T \) |
| 89 | \( 1 + (0.977 - 0.212i)T \) |
| 97 | \( 1 + (-0.900 - 0.433i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.786046441099368047777079611864, −23.87462658233171083808531371900, −23.15814602451751521111101319619, −22.40205895427769485128282431827, −21.75163606539069304473032908393, −20.68049644005673457175350884058, −19.662709907412654209693199767472, −18.6682713862357661164172334583, −17.67012489828217927924690826519, −17.07280151386726633540980605644, −15.730483141213372078301615677374, −14.91575652761730688129170007891, −13.76690644246994744507801635095, −13.29443705047275612646139285163, −12.40176401039864816624905132338, −11.14120432243246930118780131830, −10.88443922909881680799540073978, −9.27631059176081129359825245503, −7.60455258769634488982917222609, −6.86535140599728286430313830638, −6.158648515524756580320689808284, −5.21359473419002625097907379954, −3.94537326744038467828761000061, −2.42082849934982233159937149640, −1.780656886240496251178208770712,
1.22735071073688485996725441468, 2.84651878169155922477270672307, 4.03085455862798788268146924271, 4.83768450578516681980755879074, 5.96584528688448249810488744860, 6.274192339339041349710590757282, 8.245738820404864770402910079904, 9.24359953727731367957010638338, 10.54269021638243313934560171984, 11.03541636702067689830361622955, 12.20509109075039542408228276384, 13.08127066931122628299256528093, 13.92807876743592837458743626044, 14.951430396226641434919597178030, 15.99143597340224447387174715761, 16.48423823975647895213152254856, 17.37027404565901711506958114440, 18.64217067517646875699376223166, 20.099207320795655902724931028430, 20.7374077441284173949602397780, 21.39584793227669546153754874292, 22.127340724527262113050058126609, 22.96404218186708692509571482586, 23.866381756817984151711496003084, 24.66300907903231697701468769791