| L(s) = 1 | + (0.104 − 0.994i)5-s + (0.669 + 0.743i)7-s + (0.913 + 0.406i)13-s + (0.809 + 0.587i)17-s + (−0.309 − 0.951i)19-s + (0.5 + 0.866i)23-s + (−0.978 − 0.207i)25-s + (0.669 + 0.743i)29-s + (−0.913 − 0.406i)31-s + (0.809 − 0.587i)35-s + (−0.309 + 0.951i)37-s + (−0.669 + 0.743i)41-s + (0.5 − 0.866i)43-s + (0.978 + 0.207i)47-s + (−0.104 + 0.994i)49-s + ⋯ |
| L(s) = 1 | + (0.104 − 0.994i)5-s + (0.669 + 0.743i)7-s + (0.913 + 0.406i)13-s + (0.809 + 0.587i)17-s + (−0.309 − 0.951i)19-s + (0.5 + 0.866i)23-s + (−0.978 − 0.207i)25-s + (0.669 + 0.743i)29-s + (−0.913 − 0.406i)31-s + (0.809 − 0.587i)35-s + (−0.309 + 0.951i)37-s + (−0.669 + 0.743i)41-s + (0.5 − 0.866i)43-s + (0.978 + 0.207i)47-s + (−0.104 + 0.994i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0129i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0129i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.707169952 + 0.01102922681i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.707169952 + 0.01102922681i\) |
| \(L(1)\) |
\(\approx\) |
\(1.245091517 - 0.04278525111i\) |
| \(L(1)\) |
\(\approx\) |
\(1.245091517 - 0.04278525111i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 11 | \( 1 \) |
| good | 5 | \( 1 + (0.104 - 0.994i)T \) |
| 7 | \( 1 + (0.669 + 0.743i)T \) |
| 13 | \( 1 + (0.913 + 0.406i)T \) |
| 17 | \( 1 + (0.809 + 0.587i)T \) |
| 19 | \( 1 + (-0.309 - 0.951i)T \) |
| 23 | \( 1 + (0.5 + 0.866i)T \) |
| 29 | \( 1 + (0.669 + 0.743i)T \) |
| 31 | \( 1 + (-0.913 - 0.406i)T \) |
| 37 | \( 1 + (-0.309 + 0.951i)T \) |
| 41 | \( 1 + (-0.669 + 0.743i)T \) |
| 43 | \( 1 + (0.5 - 0.866i)T \) |
| 47 | \( 1 + (0.978 + 0.207i)T \) |
| 53 | \( 1 + (0.809 - 0.587i)T \) |
| 59 | \( 1 + (-0.978 + 0.207i)T \) |
| 61 | \( 1 + (0.913 - 0.406i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (0.809 + 0.587i)T \) |
| 73 | \( 1 + (-0.309 + 0.951i)T \) |
| 79 | \( 1 + (-0.104 - 0.994i)T \) |
| 83 | \( 1 + (-0.913 + 0.406i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (-0.104 - 0.994i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.511777810078961151271604649077, −21.2839875615270004522837421956, −20.86312833831706468760324310019, −19.95574252763916970239557843303, −18.87957955545523403567395411197, −18.34933086939182361106448782508, −17.56815047129539718153325820525, −16.70063893806348463888989509294, −15.8135351447998272525851762861, −14.78637846304490878862385349796, −14.222341209470980600178576914601, −13.55592861574640297776451453714, −12.42151962250397248850341914926, −11.45120721663308953976004628511, −10.58368077080147702785633098950, −10.258780127287494054035526134356, −8.92219258778821454811321985870, −7.89839758328554461288903830063, −7.25464850021977284800830891858, −6.26760737318280454296868073019, −5.38067802630782281870628264485, −4.11636764023379522134874481335, −3.36119081028908944606784072330, −2.22165229912236240795952806029, −0.99879638313333072532501573148,
1.15035107022331879078628972034, 1.94959553890068217611804014160, 3.32756629487280223622573048233, 4.44894972484048711556504062654, 5.28588193400434375205533590774, 5.99002678336917068396236929254, 7.235545595862921447037767695339, 8.40624882426964990389060854909, 8.76478211042123402712578332756, 9.68544654320172939429082647593, 10.89552090135146639937292179650, 11.663902428326825047275594416202, 12.457047394660327175500541357409, 13.26234262640153371902912792873, 14.08344155776164334566392223112, 15.14738509841978039495232059834, 15.75716121267961814551180146055, 16.737703711852311657444601848588, 17.37817468496167433186341180162, 18.28123940830824901217284485447, 19.048265123662403205186970532889, 19.99479155198564789963369688211, 20.80286097213617498151734383543, 21.44545073162234031773300096260, 21.99239157279903923291751359844