L(s) = 1 | + (−0.984 − 0.173i)2-s + (0.939 + 0.342i)4-s + (−0.342 + 0.939i)5-s + (−0.866 − 0.5i)8-s + (0.5 − 0.866i)10-s + 11-s + (0.642 + 0.766i)13-s + (0.766 + 0.642i)16-s + (−0.984 − 0.173i)17-s + (0.642 + 0.766i)19-s + (−0.642 + 0.766i)20-s + (−0.984 − 0.173i)22-s + i·23-s + (−0.766 − 0.642i)25-s + (−0.5 − 0.866i)26-s + ⋯ |
L(s) = 1 | + (−0.984 − 0.173i)2-s + (0.939 + 0.342i)4-s + (−0.342 + 0.939i)5-s + (−0.866 − 0.5i)8-s + (0.5 − 0.866i)10-s + 11-s + (0.642 + 0.766i)13-s + (0.766 + 0.642i)16-s + (−0.984 − 0.173i)17-s + (0.642 + 0.766i)19-s + (−0.642 + 0.766i)20-s + (−0.984 − 0.173i)22-s + i·23-s + (−0.766 − 0.642i)25-s + (−0.5 − 0.866i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.712 + 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.712 + 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3856972733 + 0.9410887815i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3856972733 + 0.9410887815i\) |
\(L(1)\) |
\(\approx\) |
\(0.6762141855 + 0.2168250913i\) |
\(L(1)\) |
\(\approx\) |
\(0.6762141855 + 0.2168250913i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (-0.984 - 0.173i)T \) |
| 5 | \( 1 + (-0.342 + 0.939i)T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + (0.642 + 0.766i)T \) |
| 17 | \( 1 + (-0.984 - 0.173i)T \) |
| 19 | \( 1 + (0.642 + 0.766i)T \) |
| 23 | \( 1 + iT \) |
| 29 | \( 1 + (0.866 + 0.5i)T \) |
| 31 | \( 1 + (-0.866 + 0.5i)T \) |
| 41 | \( 1 + (-0.766 + 0.642i)T \) |
| 43 | \( 1 - iT \) |
| 47 | \( 1 + T \) |
| 53 | \( 1 + (0.939 - 0.342i)T \) |
| 59 | \( 1 + (0.342 + 0.939i)T \) |
| 61 | \( 1 + (0.984 - 0.173i)T \) |
| 67 | \( 1 + (-0.766 + 0.642i)T \) |
| 71 | \( 1 + (0.939 + 0.342i)T \) |
| 73 | \( 1 + (-0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.342 + 0.939i)T \) |
| 83 | \( 1 + (0.766 + 0.642i)T \) |
| 89 | \( 1 + (-0.642 + 0.766i)T \) |
| 97 | \( 1 + (0.866 - 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−21.73648275395548399337812517161, −20.605842106836088727723317006999, −20.13016082261283318373868744966, −19.568267819176943487426853979266, −18.57647329213487810150547561536, −17.66249741609899431398890635779, −17.11919470659763338549768144598, −16.21192315736602902044560881368, −15.63345222734070293853787293047, −14.82326923548380907602156181710, −13.62644798505548576303288703574, −12.65991503613661100438233468020, −11.75971085077289720597213046166, −11.088187784309590546189040759389, −10.07799037995384414071749386942, −9.01092002244827207737235326095, −8.68290080280827277022577145968, −7.720790452788065060822328660121, −6.72987938962603459860366157569, −5.8687335381163861855237630145, −4.755031495629315186288753560067, −3.637885491011749087998244772236, −2.30768357079588755464798275804, −1.1151837763521029299760076007, −0.381252893824589425079790851939,
1.17701913080696921199192491612, 2.13742040428517466415959214771, 3.34666190981072213411164547582, 4.01145095065144396171244180955, 5.774545795341756100883811380945, 6.8051121217423982828682858281, 7.14440378523178855733178016076, 8.372582663971725431274196908953, 9.09870352218465264572691035408, 9.996032810651342083784988447899, 10.8828342435291228927843704235, 11.58245039913925100107708223877, 12.12271274776183006987555521788, 13.5820170979803533362482466548, 14.41346003497705566772071701429, 15.33574582728531490046027175836, 16.06610593144351818362396802071, 16.855176860563426786042717722068, 17.89388532361883679151640160642, 18.33065367177662604235011442524, 19.26727382219325102828795902721, 19.769174673559937478221824296226, 20.63250648447333947091597832541, 21.72079359825236262244483529617, 22.18907295157417064268460788458