Properties

Label 1-777-777.353-r1-0-0
Degree $1$
Conductor $777$
Sign $-0.712 + 0.701i$
Analytic cond. $83.5002$
Root an. cond. $83.5002$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.984 − 0.173i)2-s + (0.939 + 0.342i)4-s + (−0.342 + 0.939i)5-s + (−0.866 − 0.5i)8-s + (0.5 − 0.866i)10-s + 11-s + (0.642 + 0.766i)13-s + (0.766 + 0.642i)16-s + (−0.984 − 0.173i)17-s + (0.642 + 0.766i)19-s + (−0.642 + 0.766i)20-s + (−0.984 − 0.173i)22-s + i·23-s + (−0.766 − 0.642i)25-s + (−0.5 − 0.866i)26-s + ⋯
L(s)  = 1  + (−0.984 − 0.173i)2-s + (0.939 + 0.342i)4-s + (−0.342 + 0.939i)5-s + (−0.866 − 0.5i)8-s + (0.5 − 0.866i)10-s + 11-s + (0.642 + 0.766i)13-s + (0.766 + 0.642i)16-s + (−0.984 − 0.173i)17-s + (0.642 + 0.766i)19-s + (−0.642 + 0.766i)20-s + (−0.984 − 0.173i)22-s + i·23-s + (−0.766 − 0.642i)25-s + (−0.5 − 0.866i)26-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.712 + 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.712 + 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(1\)
Conductor: \(777\)    =    \(3 \cdot 7 \cdot 37\)
Sign: $-0.712 + 0.701i$
Analytic conductor: \(83.5002\)
Root analytic conductor: \(83.5002\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{777} (353, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((1,\ 777,\ (1:\ ),\ -0.712 + 0.701i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3856972733 + 0.9410887815i\)
\(L(\frac12)\) \(\approx\) \(0.3856972733 + 0.9410887815i\)
\(L(1)\) \(\approx\) \(0.6762141855 + 0.2168250913i\)
\(L(1)\) \(\approx\) \(0.6762141855 + 0.2168250913i\)

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
37 \( 1 \)
good2 \( 1 + (-0.984 - 0.173i)T \)
5 \( 1 + (-0.342 + 0.939i)T \)
11 \( 1 + T \)
13 \( 1 + (0.642 + 0.766i)T \)
17 \( 1 + (-0.984 - 0.173i)T \)
19 \( 1 + (0.642 + 0.766i)T \)
23 \( 1 + iT \)
29 \( 1 + (0.866 + 0.5i)T \)
31 \( 1 + (-0.866 + 0.5i)T \)
41 \( 1 + (-0.766 + 0.642i)T \)
43 \( 1 - iT \)
47 \( 1 + T \)
53 \( 1 + (0.939 - 0.342i)T \)
59 \( 1 + (0.342 + 0.939i)T \)
61 \( 1 + (0.984 - 0.173i)T \)
67 \( 1 + (-0.766 + 0.642i)T \)
71 \( 1 + (0.939 + 0.342i)T \)
73 \( 1 + (-0.5 - 0.866i)T \)
79 \( 1 + (-0.342 + 0.939i)T \)
83 \( 1 + (0.766 + 0.642i)T \)
89 \( 1 + (-0.642 + 0.766i)T \)
97 \( 1 + (0.866 - 0.5i)T \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−21.73648275395548399337812517161, −20.605842106836088727723317006999, −20.13016082261283318373868744966, −19.568267819176943487426853979266, −18.57647329213487810150547561536, −17.66249741609899431398890635779, −17.11919470659763338549768144598, −16.21192315736602902044560881368, −15.63345222734070293853787293047, −14.82326923548380907602156181710, −13.62644798505548576303288703574, −12.65991503613661100438233468020, −11.75971085077289720597213046166, −11.088187784309590546189040759389, −10.07799037995384414071749386942, −9.01092002244827207737235326095, −8.68290080280827277022577145968, −7.720790452788065060822328660121, −6.72987938962603459860366157569, −5.8687335381163861855237630145, −4.755031495629315186288753560067, −3.637885491011749087998244772236, −2.30768357079588755464798275804, −1.1151837763521029299760076007, −0.381252893824589425079790851939, 1.17701913080696921199192491612, 2.13742040428517466415959214771, 3.34666190981072213411164547582, 4.01145095065144396171244180955, 5.774545795341756100883811380945, 6.8051121217423982828682858281, 7.14440378523178855733178016076, 8.372582663971725431274196908953, 9.09870352218465264572691035408, 9.996032810651342083784988447899, 10.8828342435291228927843704235, 11.58245039913925100107708223877, 12.12271274776183006987555521788, 13.5820170979803533362482466548, 14.41346003497705566772071701429, 15.33574582728531490046027175836, 16.06610593144351818362396802071, 16.855176860563426786042717722068, 17.89388532361883679151640160642, 18.33065367177662604235011442524, 19.26727382219325102828795902721, 19.769174673559937478221824296226, 20.63250648447333947091597832541, 21.72079359825236262244483529617, 22.18907295157417064268460788458

Graph of the $Z$-function along the critical line