| L(s) = 1 | + (0.984 + 0.173i)2-s + (−0.0581 + 0.998i)3-s + (0.939 + 0.342i)4-s + (−0.993 + 0.116i)5-s + (−0.230 + 0.973i)6-s + (0.866 + 0.5i)8-s + (−0.993 − 0.116i)9-s + (−0.998 − 0.0581i)10-s + (0.549 + 0.835i)11-s + (−0.396 + 0.918i)12-s + (0.116 + 0.993i)13-s + (−0.0581 − 0.998i)15-s + (0.766 + 0.642i)16-s + (0.984 + 0.173i)17-s + (−0.957 − 0.286i)18-s + (0.342 + 0.939i)19-s + ⋯ |
| L(s) = 1 | + (0.984 + 0.173i)2-s + (−0.0581 + 0.998i)3-s + (0.939 + 0.342i)4-s + (−0.993 + 0.116i)5-s + (−0.230 + 0.973i)6-s + (0.866 + 0.5i)8-s + (−0.993 − 0.116i)9-s + (−0.998 − 0.0581i)10-s + (0.549 + 0.835i)11-s + (−0.396 + 0.918i)12-s + (0.116 + 0.993i)13-s + (−0.0581 − 0.998i)15-s + (0.766 + 0.642i)16-s + (0.984 + 0.173i)17-s + (−0.957 − 0.286i)18-s + (0.342 + 0.939i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 763 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.999 + 0.0247i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 763 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.999 + 0.0247i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.03936262484 + 3.175044187i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.03936262484 + 3.175044187i\) |
| \(L(1)\) |
\(\approx\) |
\(1.283745504 + 1.139251648i\) |
| \(L(1)\) |
\(\approx\) |
\(1.283745504 + 1.139251648i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 109 | \( 1 \) |
| good | 2 | \( 1 + (0.984 + 0.173i)T \) |
| 3 | \( 1 + (-0.0581 + 0.998i)T \) |
| 5 | \( 1 + (-0.993 + 0.116i)T \) |
| 11 | \( 1 + (0.549 + 0.835i)T \) |
| 13 | \( 1 + (0.116 + 0.993i)T \) |
| 17 | \( 1 + (0.984 + 0.173i)T \) |
| 19 | \( 1 + (0.342 + 0.939i)T \) |
| 23 | \( 1 + (0.642 + 0.766i)T \) |
| 29 | \( 1 + (0.0581 - 0.998i)T \) |
| 31 | \( 1 + (-0.597 + 0.802i)T \) |
| 37 | \( 1 + (0.802 + 0.597i)T \) |
| 41 | \( 1 + (0.866 - 0.5i)T \) |
| 43 | \( 1 + (-0.766 - 0.642i)T \) |
| 47 | \( 1 + (-0.957 - 0.286i)T \) |
| 53 | \( 1 + (-0.802 + 0.597i)T \) |
| 59 | \( 1 + (0.448 - 0.893i)T \) |
| 61 | \( 1 + (-0.973 - 0.230i)T \) |
| 67 | \( 1 + (-0.802 - 0.597i)T \) |
| 71 | \( 1 + (-0.766 + 0.642i)T \) |
| 73 | \( 1 + (-0.835 + 0.549i)T \) |
| 79 | \( 1 + (-0.116 + 0.993i)T \) |
| 83 | \( 1 + (0.835 + 0.549i)T \) |
| 89 | \( 1 + (-0.286 - 0.957i)T \) |
| 97 | \( 1 + (0.597 + 0.802i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.10969026178843482453331238485, −20.915148831117000661358458788308, −20.06199285908725765188352520067, −19.55627632286103124873718461169, −18.84697230725781837992416108613, −17.919414070114249318456909656962, −16.57461604949943663883748837873, −16.22252725213553447523420448445, −14.84486462448062611229121211002, −14.55748887259547272067516758221, −13.30948796945198460890598783411, −12.854748905651137890789722211090, −11.977189770646985372038245547355, −11.33746689710111530329769285711, −10.68748134300959567197200752030, −9.070197103421725955241991174125, −7.963469390079599210292179244, −7.384630176384795394344928788349, −6.41786131304609376483194273095, −5.57474962563923288560796051534, −4.616792952713129908369384144917, −3.28061011323772191632781762362, −2.908557445660291823268817160, −1.27306747255283857008109034532, −0.534152890114046516752429931845,
1.553350135404322043973961239555, 3.04744509373185153720781840036, 3.79313254864431004618962873309, 4.40468799212377934186417115042, 5.28130409684260099773142048069, 6.33941456654215066275808090455, 7.328490863619163268694199618236, 8.157263173988343384090699616565, 9.35543229914247708657164515372, 10.2890585013496221059302706369, 11.330586981881937569403285877516, 11.82413184905637517628451737904, 12.54102363611425203112577289907, 13.91405527775603096887162483319, 14.6246203694809804978914146550, 15.1273260393805025031188911440, 16.00537875466744687834970567160, 16.57731024063525964686558389379, 17.31314313831160959308205991715, 18.84077028252966936544175196773, 19.68216210844977989458051946362, 20.40112273080898485478367066195, 21.12306971492477095570309779910, 21.82160008497050082864093523839, 22.76967453948113001961853869320