| L(s)  = 1  |         + (−0.939 + 0.342i)5-s             + (−0.939 − 0.342i)11-s     + (0.939 − 0.342i)13-s         + (−0.5 − 0.866i)17-s     + (−0.5 + 0.866i)19-s         + (0.173 − 0.984i)23-s     + (0.766 − 0.642i)25-s         + (0.939 + 0.342i)29-s     + (−0.939 + 0.342i)31-s             + 37-s         + (−0.939 + 0.342i)41-s     + (−0.173 − 0.984i)43-s         + (0.939 + 0.342i)47-s             + (0.5 − 0.866i)53-s     + 55-s    + ⋯ | 
 
| L(s)  = 1  |         + (−0.939 + 0.342i)5-s             + (−0.939 − 0.342i)11-s     + (0.939 − 0.342i)13-s         + (−0.5 − 0.866i)17-s     + (−0.5 + 0.866i)19-s         + (0.173 − 0.984i)23-s     + (0.766 − 0.642i)25-s         + (0.939 + 0.342i)29-s     + (−0.939 + 0.342i)31-s             + 37-s         + (−0.939 + 0.342i)41-s     + (−0.173 − 0.984i)43-s         + (0.939 + 0.342i)47-s             + (0.5 − 0.866i)53-s     + 55-s    + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.163 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.163 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(\frac{1}{2})\)  | 
            \(\approx\) | 
             \(0.4880029368 + 0.5754781415i\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.4880029368 + 0.5754781415i\)  | 
    
    
        
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(0.7912388489 + 0.03663778720i\)  | 
          
    
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(0.7912388489 + 0.03663778720i\)  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 \)  | 
 | 3 |  \( 1 \)  | 
 | 7 |  \( 1 \)  | 
| good | 5 |  \( 1 + (-0.939 + 0.342i)T \)  | 
 | 11 |  \( 1 + (-0.939 - 0.342i)T \)  | 
 | 13 |  \( 1 + (0.939 - 0.342i)T \)  | 
 | 17 |  \( 1 + (-0.5 - 0.866i)T \)  | 
 | 19 |  \( 1 + (-0.5 + 0.866i)T \)  | 
 | 23 |  \( 1 + (0.173 - 0.984i)T \)  | 
 | 29 |  \( 1 + (0.939 + 0.342i)T \)  | 
 | 31 |  \( 1 + (-0.939 + 0.342i)T \)  | 
 | 37 |  \( 1 + T \)  | 
 | 41 |  \( 1 + (-0.939 + 0.342i)T \)  | 
 | 43 |  \( 1 + (-0.173 - 0.984i)T \)  | 
 | 47 |  \( 1 + (0.939 + 0.342i)T \)  | 
 | 53 |  \( 1 + (0.5 - 0.866i)T \)  | 
 | 59 |  \( 1 + (-0.766 - 0.642i)T \)  | 
 | 61 |  \( 1 + (0.939 + 0.342i)T \)  | 
 | 67 |  \( 1 + (-0.173 + 0.984i)T \)  | 
 | 71 |  \( 1 + (-0.5 + 0.866i)T \)  | 
 | 73 |  \( 1 - T \)  | 
 | 79 |  \( 1 + (-0.173 - 0.984i)T \)  | 
 | 83 |  \( 1 + (0.939 + 0.342i)T \)  | 
 | 89 |  \( 1 + (-0.5 + 0.866i)T \)  | 
 | 97 |  \( 1 + (-0.173 - 0.984i)T \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \  (1 - \alpha_{p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−21.87190226399180374316304082046, −21.22408574744483094479906325999, −20.2731014231306209649576553327, −19.67027110178365718439825405829, −18.827132395468674331675060025399, −18.02591276942565946732640373017, −17.10174471374940000961940171968, −16.178164559066921839135813385278, −15.44732513743794828234277632197, −14.98353038712189547591368621925, −13.53776778452362176548198795054, −13.036587363334790301927097782309, −12.08182405134819840814828650684, −11.16474736637476684408361155367, −10.59253850294086456705694269818, −9.29469416204913647875912042475, −8.49151776001076732377107658424, −7.74900607112552392508403902623, −6.82010626435052192953161477154, −5.73458037697269332293174972468, −4.63355264550217558368271636362, −3.93281039729262744000308784305, −2.81256020338470616941649623269, −1.531995633932126078286124830339, −0.22602564175764061315993972827, 
0.83637348738956730870688820780, 2.442217003992968939802612343442, 3.33037801925841024601179380540, 4.26896068144137420863717212525, 5.297791418477706680782441814434, 6.39102244630405349854633994375, 7.27986948106922049282243886978, 8.23770099019239821597005153162, 8.75427837111765096385020977672, 10.251286835414716305431742742439, 10.80309186964063925693393738105, 11.6301019428064434543582938519, 12.56795388072828620033496195037, 13.36597398175987150680279606130, 14.36013392584733140600931574513, 15.180408524959420097848151185509, 16.040341325686013335249572998049, 16.41878363152162563067177532526, 17.83513880630101627064864055878, 18.53583532517472705604248622055, 19.01242894096005713371654651036, 20.26150344528834130213361079561, 20.57212742552005581595540031753, 21.71665364335142139304875285659, 22.53678565818543455096390198564