L(s) = 1 | − 2-s − 3-s + 4-s + 5-s + 6-s − 7-s − 8-s + 9-s − 10-s + 11-s − 12-s − 13-s + 14-s − 15-s + 16-s + 17-s − 18-s − 19-s + 20-s + 21-s − 22-s − 23-s + 24-s + 25-s + 26-s − 27-s − 28-s + ⋯ |
L(s) = 1 | − 2-s − 3-s + 4-s + 5-s + 6-s − 7-s − 8-s + 9-s − 10-s + 11-s − 12-s − 13-s + 14-s − 15-s + 16-s + 17-s − 18-s − 19-s + 20-s + 21-s − 22-s − 23-s + 24-s + 25-s + 26-s − 27-s − 28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 739 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 739 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8543487994\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8543487994\) |
\(L(1)\) |
\(\approx\) |
\(0.5778267693\) |
\(L(1)\) |
\(\approx\) |
\(0.5778267693\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 739 | \( 1 \) |
good | 2 | \( 1 - T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 - T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 - T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 + T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 - T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 - T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 - T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.15383706953364843683577198210, −21.57892329603615968734388028490, −20.69335883533223481363715884664, −19.50996022780220914202437237728, −19.03559480140144393307955717961, −18.06405253777672270886584595494, −17.32042407776335982324384262737, −16.77002474362635043063752105391, −16.295484580430605749862849884986, −15.12288399686172235754564103839, −14.20586486399319898810776065483, −12.78184521351090083673181094474, −12.343513342157929709396941046526, −11.35574198701189840347809061798, −10.35767131750435878989628473185, −9.71183663509992183183118240349, −9.32802840705322774322603367170, −7.85031013807199415269007109191, −6.789251115712917238052730978852, −6.24231069610728597327278072915, −5.56950553390567582366266535822, −4.100839531078580143820717817606, −2.68497131744157144917594305070, −1.63486576112972507444418921867, −0.56953475733824429892847871648,
0.56953475733824429892847871648, 1.63486576112972507444418921867, 2.68497131744157144917594305070, 4.100839531078580143820717817606, 5.56950553390567582366266535822, 6.24231069610728597327278072915, 6.789251115712917238052730978852, 7.85031013807199415269007109191, 9.32802840705322774322603367170, 9.71183663509992183183118240349, 10.35767131750435878989628473185, 11.35574198701189840347809061798, 12.343513342157929709396941046526, 12.78184521351090083673181094474, 14.20586486399319898810776065483, 15.12288399686172235754564103839, 16.295484580430605749862849884986, 16.77002474362635043063752105391, 17.32042407776335982324384262737, 18.06405253777672270886584595494, 19.03559480140144393307955717961, 19.50996022780220914202437237728, 20.69335883533223481363715884664, 21.57892329603615968734388028490, 22.15383706953364843683577198210