| L(s) = 1 | + (0.925 − 0.379i)2-s + (0.998 + 0.0530i)3-s + (0.711 − 0.702i)4-s + (0.853 − 0.521i)5-s + (0.943 − 0.329i)6-s + (−0.416 + 0.909i)7-s + (0.391 − 0.920i)8-s + (0.994 + 0.105i)9-s + (0.591 − 0.806i)10-s + (−0.809 − 0.587i)11-s + (0.748 − 0.663i)12-s + (0.925 + 0.379i)13-s + (−0.0398 + 0.999i)14-s + (0.879 − 0.475i)15-s + (0.0132 − 0.999i)16-s + (0.375 + 0.926i)17-s + ⋯ |
| L(s) = 1 | + (0.925 − 0.379i)2-s + (0.998 + 0.0530i)3-s + (0.711 − 0.702i)4-s + (0.853 − 0.521i)5-s + (0.943 − 0.329i)6-s + (−0.416 + 0.909i)7-s + (0.391 − 0.920i)8-s + (0.994 + 0.105i)9-s + (0.591 − 0.806i)10-s + (−0.809 − 0.587i)11-s + (0.748 − 0.663i)12-s + (0.925 + 0.379i)13-s + (−0.0398 + 0.999i)14-s + (0.879 − 0.475i)15-s + (0.0132 − 0.999i)16-s + (0.375 + 0.926i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5041 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.757 - 0.652i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5041 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.757 - 0.652i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(5.782658286 - 2.145985365i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(5.782658286 - 2.145985365i\) |
| \(L(1)\) |
\(\approx\) |
\(2.886103573 - 0.7531370216i\) |
| \(L(1)\) |
\(\approx\) |
\(2.886103573 - 0.7531370216i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 71 | \( 1 \) |
| good | 2 | \( 1 + (0.925 - 0.379i)T \) |
| 3 | \( 1 + (0.998 + 0.0530i)T \) |
| 5 | \( 1 + (0.853 - 0.521i)T \) |
| 7 | \( 1 + (-0.416 + 0.909i)T \) |
| 11 | \( 1 + (-0.809 - 0.587i)T \) |
| 13 | \( 1 + (0.925 + 0.379i)T \) |
| 17 | \( 1 + (0.375 + 0.926i)T \) |
| 19 | \( 1 + (-0.819 + 0.573i)T \) |
| 23 | \( 1 + (0.996 + 0.0883i)T \) |
| 29 | \( 1 + (0.994 - 0.105i)T \) |
| 31 | \( 1 + (-0.907 + 0.420i)T \) |
| 37 | \( 1 + (0.996 + 0.0883i)T \) |
| 41 | \( 1 + (-0.975 + 0.219i)T \) |
| 43 | \( 1 + (0.136 - 0.990i)T \) |
| 47 | \( 1 + (-0.479 + 0.877i)T \) |
| 53 | \( 1 + (-0.680 - 0.733i)T \) |
| 59 | \( 1 + (0.803 - 0.594i)T \) |
| 61 | \( 1 + (-0.494 - 0.868i)T \) |
| 67 | \( 1 + (0.871 - 0.491i)T \) |
| 73 | \( 1 + (0.605 - 0.795i)T \) |
| 79 | \( 1 + (-0.266 + 0.963i)T \) |
| 83 | \( 1 + (0.686 - 0.727i)T \) |
| 89 | \( 1 + (-0.180 + 0.983i)T \) |
| 97 | \( 1 + (0.903 + 0.428i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.131669679195995538603852846760, −17.40064736170097478523841685077, −16.5851064906479221174274026442, −15.95347574617233048917878072461, −15.233266314682360100394481336558, −14.71847300990786028481179083009, −14.057438183659270980432183917380, −13.37266936907093651688334556099, −13.161152079579851646581330359726, −12.598407639681768965114062375295, −11.31710501405559174778978250892, −10.64911735348417706292086118928, −10.10048018752549807850110918324, −9.302725380952652564498985020922, −8.44074935390750658981221943961, −7.660911429182413565321440389712, −7.00829605045651878338826796699, −6.64330635487396740819679990272, −5.69304010990658604715453980026, −4.83128734694217910634999704171, −4.18418629247956171573352893825, −3.19238834156797479368192905347, −2.88553975946053750833742180759, −2.10553131823408086081061365143, −1.12058887685892151842348782554,
1.104444057503519049699116685838, 1.877060461325518626005490311871, 2.41648837144989748715788867161, 3.263002859693975627215783347430, 3.75215373500525206990740623005, 4.842716233435838965580130579922, 5.36022394283676674950250891599, 6.30786635923533960904762563799, 6.521119308911452305970106731894, 7.94465029501209250840911657770, 8.51712875688421292439297176918, 9.168414546510281642292627444620, 9.888467871963160049448653923611, 10.54005379334500615985814297925, 11.19024446658788063638610192762, 12.45743280145503197750071850570, 12.6555198313418415473685119187, 13.335651569870729008036679230727, 13.77765475592354333222779444071, 14.625944441935628781324045217910, 15.034940693273258465516048739674, 16.00746873473612364420773179044, 16.1589935433086797229766380910, 17.18378586927874400676375471463, 18.42480642996715987017723170766