| L(s) = 1 | + (−0.598 + 0.801i)2-s + (−0.666 − 0.745i)3-s + (−0.283 − 0.958i)4-s + (−0.952 + 0.304i)5-s + (0.996 − 0.0883i)6-s + (0.699 − 0.714i)7-s + (0.937 + 0.346i)8-s + (−0.110 + 0.993i)9-s + (0.325 − 0.945i)10-s + 11-s + (−0.525 + 0.850i)12-s + (−0.598 − 0.801i)13-s + (0.154 + 0.988i)14-s + (0.862 + 0.506i)15-s + (−0.839 + 0.544i)16-s + (0.562 + 0.826i)17-s + ⋯ |
| L(s) = 1 | + (−0.598 + 0.801i)2-s + (−0.666 − 0.745i)3-s + (−0.283 − 0.958i)4-s + (−0.952 + 0.304i)5-s + (0.996 − 0.0883i)6-s + (0.699 − 0.714i)7-s + (0.937 + 0.346i)8-s + (−0.110 + 0.993i)9-s + (0.325 − 0.945i)10-s + 11-s + (−0.525 + 0.850i)12-s + (−0.598 − 0.801i)13-s + (0.154 + 0.988i)14-s + (0.862 + 0.506i)15-s + (−0.839 + 0.544i)16-s + (0.562 + 0.826i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5041 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.947 + 0.319i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5041 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.947 + 0.319i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9613170705 + 0.1577590425i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9613170705 + 0.1577590425i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6617661333 + 0.06388832661i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6617661333 + 0.06388832661i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 71 | \( 1 \) |
| good | 2 | \( 1 + (-0.598 + 0.801i)T \) |
| 3 | \( 1 + (-0.666 - 0.745i)T \) |
| 5 | \( 1 + (-0.952 + 0.304i)T \) |
| 7 | \( 1 + (0.699 - 0.714i)T \) |
| 11 | \( 1 + T \) |
| 13 | \( 1 + (-0.598 - 0.801i)T \) |
| 17 | \( 1 + (0.562 + 0.826i)T \) |
| 19 | \( 1 + (0.240 + 0.970i)T \) |
| 23 | \( 1 + (0.937 + 0.346i)T \) |
| 29 | \( 1 + (-0.110 - 0.993i)T \) |
| 31 | \( 1 + (-0.448 + 0.894i)T \) |
| 37 | \( 1 + (0.937 + 0.346i)T \) |
| 41 | \( 1 + (0.633 - 0.773i)T \) |
| 43 | \( 1 + (0.759 - 0.650i)T \) |
| 47 | \( 1 + (-0.197 - 0.980i)T \) |
| 53 | \( 1 + (-0.448 + 0.894i)T \) |
| 59 | \( 1 + (-0.787 + 0.616i)T \) |
| 61 | \( 1 + (0.903 + 0.428i)T \) |
| 67 | \( 1 + (0.699 - 0.714i)T \) |
| 73 | \( 1 + (0.996 + 0.0883i)T \) |
| 79 | \( 1 + (0.984 - 0.176i)T \) |
| 83 | \( 1 + (-0.197 + 0.980i)T \) |
| 89 | \( 1 + (0.862 - 0.506i)T \) |
| 97 | \( 1 + (-0.197 + 0.980i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.961944305974171162283796979192, −17.393103706984875599239676228220, −16.595728931359823209024174518143, −16.34085023195368890396923503400, −15.517444863154507518159757458977, −14.654413594203941974487010874352, −14.27889866757435134707671020185, −12.79186273619053309189393523343, −12.444432724516535943985648846213, −11.54275963192791632630639511912, −11.386600387955144754933723281, −10.98995000418670924264722297516, −9.66258760991771910538538689432, −9.26659588790007746883714998197, −8.883097134312565130370654178623, −7.88332750278879611640751614658, −7.2109442775926130042314565566, −6.41611519479763118816389064051, −5.10055147520507473219980060755, −4.73800358810237052296666531046, −4.10167518818739379570576236055, −3.26101861915913068300190808945, −2.5072471631052325020520153198, −1.31004115050212602957658855470, −0.62012600553511458933780824160,
0.74501987793586283100000883720, 1.19065704181676101742609552134, 2.17615029974347201415912971742, 3.5656388810725559925748222504, 4.2923267460455823826976711971, 5.13421907645309909400777515554, 5.78855274105544228530656127356, 6.62256455111801510724717742555, 7.21435641960270585754319869740, 7.84962387347783039306235577432, 8.05871506217857808802413635310, 9.07413065079937818571139721637, 10.13643115623034263530661395827, 10.67998890344256449923975771881, 11.22048296618407297926883447053, 12.014812868484607384883294518173, 12.57856090611150396555227485350, 13.57988342526543547321329398788, 14.29021180864237425060455131386, 14.78030534656386921132622917272, 15.403312366482588548718512030781, 16.35166774743485314814051939874, 16.93716885900142784742136227346, 17.262718999721647941555172850642, 17.93583488240503335530711481256