L(s) = 1 | + (0.789 − 0.613i)2-s + (0.356 + 0.934i)3-s + (0.247 − 0.968i)4-s + (0.854 + 0.519i)6-s + (−0.999 + 0.0227i)7-s + (−0.398 − 0.917i)8-s + (−0.746 + 0.665i)9-s + (0.995 + 0.0909i)11-s + (0.993 − 0.113i)12-s + (0.987 + 0.158i)13-s + (−0.775 + 0.631i)14-s + (−0.877 − 0.480i)16-s + (−0.0455 + 0.998i)17-s + (−0.181 + 0.983i)18-s + (0.538 − 0.842i)19-s + ⋯ |
L(s) = 1 | + (0.789 − 0.613i)2-s + (0.356 + 0.934i)3-s + (0.247 − 0.968i)4-s + (0.854 + 0.519i)6-s + (−0.999 + 0.0227i)7-s + (−0.398 − 0.917i)8-s + (−0.746 + 0.665i)9-s + (0.995 + 0.0909i)11-s + (0.993 − 0.113i)12-s + (0.987 + 0.158i)13-s + (−0.775 + 0.631i)14-s + (−0.877 − 0.480i)16-s + (−0.0455 + 0.998i)17-s + (−0.181 + 0.983i)18-s + (0.538 − 0.842i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 695 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00237i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 695 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00237i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.422837578 + 0.002875717152i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.422837578 + 0.002875717152i\) |
\(L(1)\) |
\(\approx\) |
\(1.744147024 - 0.1083828479i\) |
\(L(1)\) |
\(\approx\) |
\(1.744147024 - 0.1083828479i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 139 | \( 1 \) |
good | 2 | \( 1 + (0.789 - 0.613i)T \) |
| 3 | \( 1 + (0.356 + 0.934i)T \) |
| 7 | \( 1 + (-0.999 + 0.0227i)T \) |
| 11 | \( 1 + (0.995 + 0.0909i)T \) |
| 13 | \( 1 + (0.987 + 0.158i)T \) |
| 17 | \( 1 + (-0.0455 + 0.998i)T \) |
| 19 | \( 1 + (0.538 - 0.842i)T \) |
| 23 | \( 1 + (0.519 + 0.854i)T \) |
| 29 | \( 1 + (0.715 + 0.699i)T \) |
| 31 | \( 1 + (0.746 + 0.665i)T \) |
| 37 | \( 1 + (0.557 - 0.829i)T \) |
| 41 | \( 1 + (-0.648 - 0.761i)T \) |
| 43 | \( 1 + (0.866 - 0.5i)T \) |
| 47 | \( 1 + (-0.956 + 0.291i)T \) |
| 53 | \( 1 + (0.926 + 0.377i)T \) |
| 59 | \( 1 + (0.962 + 0.269i)T \) |
| 61 | \( 1 + (0.648 - 0.761i)T \) |
| 67 | \( 1 + (-0.907 - 0.419i)T \) |
| 71 | \( 1 + (0.291 - 0.956i)T \) |
| 73 | \( 1 + (-0.595 + 0.803i)T \) |
| 79 | \( 1 + (0.334 + 0.942i)T \) |
| 83 | \( 1 + (-0.907 + 0.419i)T \) |
| 89 | \( 1 + (-0.898 - 0.439i)T \) |
| 97 | \( 1 + (0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.80892865761148710805988314943, −22.30099436522163485145221264001, −20.92635830122788101047642484240, −20.36876834973608827500788714230, −19.414715144075463196087983194573, −18.56817684063701451763952622744, −17.74884567962787932848189915147, −16.6998745009851960084610086756, −16.1524481307101232496288362200, −15.08113318924396963580840305052, −14.263580721569795021666840374494, −13.48948718263833730121131441775, −13.02338460648058095600771621907, −11.95530278419894421849799803456, −11.5251859721039080185052468827, −9.84914585008630574876565687094, −8.81042288645907515181303975147, −8.084503752790051337307812485312, −6.98754861917671415188392401348, −6.42300463984294701142822023413, −5.764277799151069497369777187928, −4.28574365136175445689616914745, −3.31307279174045188983105515085, −2.618923527493902239752964170512, −1.04515305289742338567373661097,
1.25007556690723350968669261377, 2.65055788206571684126586873447, 3.558824399913766169330540970495, 4.02844994190558556432198733384, 5.19861182293823694342191698796, 6.121003872948836562468752205450, 6.96250347808683762474011855882, 8.71628550896177242747576004612, 9.29311398584616915154601897512, 10.16679358656312066933744200391, 10.939510428965032855885721705369, 11.75163381016535888952536930702, 12.78378412911782300464248598470, 13.63574449359358908410666231682, 14.26775019312621281482599068889, 15.30333257202949447819278631805, 15.78876158820974905677454166041, 16.63366117999323331522828423350, 17.77612418805607995527745196396, 19.188917496259386906279073665465, 19.56861467390943625338759347826, 20.23809516437654012223163338632, 21.27221905258285714817249555223, 21.74943859362175892485954356668, 22.53582762710917882765583370827