| L(s) = 1 | + (−0.631 + 0.775i)2-s + (0.269 + 0.962i)3-s + (−0.203 − 0.979i)4-s + (−0.917 − 0.398i)6-s + (−0.398 − 0.917i)7-s + (0.887 + 0.460i)8-s + (−0.854 + 0.519i)9-s + (−0.0682 + 0.997i)11-s + (0.887 − 0.460i)12-s + (−0.269 − 0.962i)13-s + (0.962 + 0.269i)14-s + (−0.917 + 0.398i)16-s + (0.730 − 0.682i)17-s + (0.136 − 0.990i)18-s + (0.682 + 0.730i)19-s + ⋯ |
| L(s) = 1 | + (−0.631 + 0.775i)2-s + (0.269 + 0.962i)3-s + (−0.203 − 0.979i)4-s + (−0.917 − 0.398i)6-s + (−0.398 − 0.917i)7-s + (0.887 + 0.460i)8-s + (−0.854 + 0.519i)9-s + (−0.0682 + 0.997i)11-s + (0.887 − 0.460i)12-s + (−0.269 − 0.962i)13-s + (0.962 + 0.269i)14-s + (−0.917 + 0.398i)16-s + (0.730 − 0.682i)17-s + (0.136 − 0.990i)18-s + (0.682 + 0.730i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 695 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.585 + 0.810i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 695 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.585 + 0.810i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8590522630 + 0.4393322339i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8590522630 + 0.4393322339i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7257000593 + 0.3551658276i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7257000593 + 0.3551658276i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 139 | \( 1 \) |
| good | 2 | \( 1 + (-0.631 + 0.775i)T \) |
| 3 | \( 1 + (0.269 + 0.962i)T \) |
| 7 | \( 1 + (-0.398 - 0.917i)T \) |
| 11 | \( 1 + (-0.0682 + 0.997i)T \) |
| 13 | \( 1 + (-0.269 - 0.962i)T \) |
| 17 | \( 1 + (0.730 - 0.682i)T \) |
| 19 | \( 1 + (0.682 + 0.730i)T \) |
| 23 | \( 1 + (-0.398 - 0.917i)T \) |
| 29 | \( 1 + (-0.203 - 0.979i)T \) |
| 31 | \( 1 + (0.854 + 0.519i)T \) |
| 37 | \( 1 + (0.942 - 0.334i)T \) |
| 41 | \( 1 + (-0.990 + 0.136i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (0.816 - 0.576i)T \) |
| 53 | \( 1 + (0.631 - 0.775i)T \) |
| 59 | \( 1 + (0.203 - 0.979i)T \) |
| 61 | \( 1 + (0.990 + 0.136i)T \) |
| 67 | \( 1 + (0.997 - 0.0682i)T \) |
| 71 | \( 1 + (-0.576 + 0.816i)T \) |
| 73 | \( 1 + (0.887 + 0.460i)T \) |
| 79 | \( 1 + (0.990 + 0.136i)T \) |
| 83 | \( 1 + (0.997 + 0.0682i)T \) |
| 89 | \( 1 + (0.334 - 0.942i)T \) |
| 97 | \( 1 - iT \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.12142699765943898691871844809, −21.79252031285534012768115819066, −20.79777575638856731069522030713, −19.80379362182848125135511365045, −19.127688623423561044077836482933, −18.737645409903466512834378906, −17.96073448477685738385886479921, −17.00947054878448255991257609342, −16.26195077376943781944077339838, −15.11072638778803508301924665269, −13.850500114956073344255475554525, −13.375873825260509140589981612769, −12.24963927655709815307970088007, −11.867244518477215607820884738382, −11.010456326746621300144393093165, −9.68927259811377184868396633014, −8.99494112317820993313643046382, −8.28960215034285488074502963539, −7.38389267708712038296300480977, −6.396602621953157684513494328179, −5.37733354629706992786179853221, −3.70826148043054147550880505388, −2.90001643524460208832363699841, −2.03344818437619287622558063423, −0.9505865233860190215937139486,
0.7407214541687172854863543218, 2.43291406596495033585744537251, 3.71186649077687938363116256419, 4.70550090982480885574764328222, 5.47450423747950092286788678622, 6.623581030715645221655356868942, 7.68230745636983373929255454348, 8.18427688535878087638547386079, 9.57825859196840647003958475046, 9.966671738647204557423206356846, 10.49917040580901960677739317176, 11.74515787821189079506307332890, 13.08250774707333031934437281659, 14.10353549399223773391933468527, 14.661472449056732257331187132349, 15.55651798032349364408618284364, 16.22921405986743393176554863054, 16.925300195309084291573410702272, 17.65187205767048418536079952505, 18.60120075074300176444746298096, 19.70322058556297874078689932737, 20.281083909558038556785854169629, 20.81406765567421490732615518049, 22.33589807988907214833643404964, 22.866616280407020274022227357556