L(s) = 1 | + (0.382 − 0.923i)3-s + (−0.923 + 0.382i)7-s + (−0.707 − 0.707i)9-s + (−0.923 + 0.382i)11-s − 13-s + (0.707 − 0.707i)19-s − i·21-s + (0.382 + 0.923i)23-s + (−0.923 + 0.382i)27-s + (−0.382 + 0.923i)29-s + (0.923 + 0.382i)31-s + i·33-s + (−0.382 + 0.923i)37-s + (−0.382 + 0.923i)39-s + (0.382 + 0.923i)41-s + ⋯ |
L(s) = 1 | + (0.382 − 0.923i)3-s + (−0.923 + 0.382i)7-s + (−0.707 − 0.707i)9-s + (−0.923 + 0.382i)11-s − 13-s + (0.707 − 0.707i)19-s − i·21-s + (0.382 + 0.923i)23-s + (−0.923 + 0.382i)27-s + (−0.382 + 0.923i)29-s + (0.923 + 0.382i)31-s + i·33-s + (−0.382 + 0.923i)37-s + (−0.382 + 0.923i)39-s + (0.382 + 0.923i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0211 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0211 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3512521343 + 0.3587673662i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3512521343 + 0.3587673662i\) |
\(L(1)\) |
\(\approx\) |
\(0.7954156121 - 0.09645563613i\) |
\(L(1)\) |
\(\approx\) |
\(0.7954156121 - 0.09645563613i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 \) |
good | 3 | \( 1 + (0.382 - 0.923i)T \) |
| 7 | \( 1 + (-0.923 + 0.382i)T \) |
| 11 | \( 1 + (-0.923 + 0.382i)T \) |
| 13 | \( 1 - T \) |
| 19 | \( 1 + (0.707 - 0.707i)T \) |
| 23 | \( 1 + (0.382 + 0.923i)T \) |
| 29 | \( 1 + (-0.382 + 0.923i)T \) |
| 31 | \( 1 + (0.923 + 0.382i)T \) |
| 37 | \( 1 + (-0.382 + 0.923i)T \) |
| 41 | \( 1 + (0.382 + 0.923i)T \) |
| 43 | \( 1 + (-0.707 + 0.707i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 + (0.707 + 0.707i)T \) |
| 59 | \( 1 + (-0.707 - 0.707i)T \) |
| 61 | \( 1 + (0.382 + 0.923i)T \) |
| 67 | \( 1 - iT \) |
| 71 | \( 1 + (-0.923 - 0.382i)T \) |
| 73 | \( 1 + (-0.923 - 0.382i)T \) |
| 79 | \( 1 + (-0.923 + 0.382i)T \) |
| 83 | \( 1 + (-0.707 - 0.707i)T \) |
| 89 | \( 1 + iT \) |
| 97 | \( 1 + (-0.923 - 0.382i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.67985404951147916725762493760, −21.635080049471866432469852444664, −20.885010760935462387580197066, −20.19419248853102542371542365935, −19.32582635187652407243284134062, −18.69192939425278812748103748743, −17.355298612495548580961945643, −16.592225060768126106159691712324, −15.96139033615196127748527764481, −15.20027708855766406979006475023, −14.263916751715055180831667028189, −13.50171099621588754241124307844, −12.603163161557131602887416934978, −11.526127533876896398281050483901, −10.34967493862189055028818337359, −10.04423998091770664564626902975, −9.098300540582498030125999781303, −8.08461732339141952310947603196, −7.22782006539795519668481294467, −5.94784643062380734065737472262, −5.07869844872727145999369069982, −4.06261055277012499702417954355, −3.12885401536011056750083387778, −2.34323719663005940423797829698, −0.22206355710863527222543291482,
1.416954794980324572010546792560, 2.74671630859549286942094360735, 3.10068604397101733043891678902, 4.820076915537140638348613901793, 5.74519663264785694221877702505, 6.865232736424499348970686060807, 7.39691720362347927576597784592, 8.41907715440832452079449799691, 9.40896269216230999369307106430, 10.07366565046883490832445611909, 11.47052319611508002463628967310, 12.23233372996969334855446944617, 13.05056430896432468997568796936, 13.52075073164073326596279030388, 14.70579409758037596480056975937, 15.398512290279045365798816352240, 16.33074438482015032137106271542, 17.43121650095877372772877242859, 18.10018194794237541792015361743, 18.91920489979313030108728408571, 19.64168391482793245524728705410, 20.20370264327560491330988620433, 21.320085935424807579213454980885, 22.20248515761266159482042813904, 23.06678463677603823857023426199