L(s) = 1 | + (0.995 − 0.0950i)2-s + (−0.841 + 0.540i)3-s + (0.981 − 0.189i)4-s + (0.142 − 0.989i)5-s + (−0.786 + 0.618i)6-s + (−0.580 − 0.814i)7-s + (0.959 − 0.281i)8-s + (0.415 − 0.909i)9-s + (0.0475 − 0.998i)10-s + (0.786 + 0.618i)11-s + (−0.723 + 0.690i)12-s + (−0.235 − 0.971i)13-s + (−0.654 − 0.755i)14-s + (0.415 + 0.909i)15-s + (0.928 − 0.371i)16-s + (0.981 + 0.189i)17-s + ⋯ |
L(s) = 1 | + (0.995 − 0.0950i)2-s + (−0.841 + 0.540i)3-s + (0.981 − 0.189i)4-s + (0.142 − 0.989i)5-s + (−0.786 + 0.618i)6-s + (−0.580 − 0.814i)7-s + (0.959 − 0.281i)8-s + (0.415 − 0.909i)9-s + (0.0475 − 0.998i)10-s + (0.786 + 0.618i)11-s + (−0.723 + 0.690i)12-s + (−0.235 − 0.971i)13-s + (−0.654 − 0.755i)14-s + (0.415 + 0.909i)15-s + (0.928 − 0.371i)16-s + (0.981 + 0.189i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 67 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.533 - 0.845i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 67 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.533 - 0.845i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.980550940 - 1.092203260i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.980550940 - 1.092203260i\) |
\(L(1)\) |
\(\approx\) |
\(1.529775123 - 0.3799690314i\) |
\(L(1)\) |
\(\approx\) |
\(1.529775123 - 0.3799690314i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 67 | \( 1 \) |
good | 2 | \( 1 + (0.995 - 0.0950i)T \) |
| 3 | \( 1 + (-0.841 + 0.540i)T \) |
| 5 | \( 1 + (0.142 - 0.989i)T \) |
| 7 | \( 1 + (-0.580 - 0.814i)T \) |
| 11 | \( 1 + (0.786 + 0.618i)T \) |
| 13 | \( 1 + (-0.235 - 0.971i)T \) |
| 17 | \( 1 + (0.981 + 0.189i)T \) |
| 19 | \( 1 + (0.580 - 0.814i)T \) |
| 23 | \( 1 + (-0.888 - 0.458i)T \) |
| 29 | \( 1 + (-0.5 + 0.866i)T \) |
| 31 | \( 1 + (-0.235 + 0.971i)T \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (0.327 + 0.945i)T \) |
| 43 | \( 1 + (0.654 - 0.755i)T \) |
| 47 | \( 1 + (0.0475 + 0.998i)T \) |
| 53 | \( 1 + (0.654 + 0.755i)T \) |
| 59 | \( 1 + (-0.959 + 0.281i)T \) |
| 61 | \( 1 + (0.786 - 0.618i)T \) |
| 71 | \( 1 + (0.981 - 0.189i)T \) |
| 73 | \( 1 + (-0.786 + 0.618i)T \) |
| 79 | \( 1 + (-0.723 + 0.690i)T \) |
| 83 | \( 1 + (0.928 - 0.371i)T \) |
| 89 | \( 1 + (0.841 + 0.540i)T \) |
| 97 | \( 1 + (0.5 + 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−31.80403639149337697264809183404, −30.77591006059832307972793980947, −29.66370189343486775851562989407, −29.202090675547551245900768451263, −27.8120168297427308311091648409, −26.1037124335545414422583513953, −25.006239204212810210072227103533, −24.067242483582228762357168466724, −22.7809586211342197034806053849, −22.23811957260963812875099452279, −21.3419478461252987371739483732, −19.3026341885628123253881651962, −18.61828727789095674753277483931, −16.948668884896585568643520409213, −15.96566073145053090920051375645, −14.51729314772787004984055050257, −13.555276813978283060055852465292, −12.0012930559934220032315937342, −11.55968285006404015624994143185, −9.95946652463905708730601916223, −7.54039677409698998290086393963, −6.33525076195561171445705399303, −5.67964835852877766753341836384, −3.65720061357952602547949088261, −2.04398919337999714727731013531,
1.022137483119961865812362567622, 3.6233106332487323312219461875, 4.75944937935268326829004540346, 5.85616558480951726275085754062, 7.26381104590399578311814476482, 9.59114248648782310422035745627, 10.63969925556725098718943981492, 12.16534367589574757076654287071, 12.78511091196945487600506947073, 14.292972493014341419848864319288, 15.7477331192231501342074546393, 16.5708300756243728680137775805, 17.521616262782847864373366391039, 19.86199286284046161189282606117, 20.46546940964177642418990663136, 21.7601733188229683832018875236, 22.70012657728969058123643163728, 23.54754800828053375622160281914, 24.62496420530947158587926660656, 25.88039934923639137380630314232, 27.58184355808159933898790959084, 28.42722510903025563997917079800, 29.47278822209482229652693351553, 30.30068950046386923864193314244, 32.0860997608806226050259278790