L(s) = 1 | + (0.5 − 0.866i)2-s − 3-s + (−0.5 − 0.866i)4-s − 5-s + (−0.5 + 0.866i)6-s + (0.5 + 0.866i)7-s − 8-s + 9-s + (−0.5 + 0.866i)10-s + (0.5 + 0.866i)11-s + (0.5 + 0.866i)12-s + (0.5 − 0.866i)13-s + 14-s + 15-s + (−0.5 + 0.866i)16-s + (−0.5 + 0.866i)17-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s − 3-s + (−0.5 − 0.866i)4-s − 5-s + (−0.5 + 0.866i)6-s + (0.5 + 0.866i)7-s − 8-s + 9-s + (−0.5 + 0.866i)10-s + (0.5 + 0.866i)11-s + (0.5 + 0.866i)12-s + (0.5 − 0.866i)13-s + 14-s + 15-s + (−0.5 + 0.866i)16-s + (−0.5 + 0.866i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 67 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.667 + 0.744i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 67 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.667 + 0.744i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6810074740 + 0.3042317139i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6810074740 + 0.3042317139i\) |
\(L(1)\) |
\(\approx\) |
\(0.7512384426 - 0.1577051546i\) |
\(L(1)\) |
\(\approx\) |
\(0.7512384426 - 0.1577051546i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 67 | \( 1 \) |
good | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + (0.5 + 0.866i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
| 17 | \( 1 + (-0.5 + 0.866i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.5 + 0.866i)T \) |
| 29 | \( 1 + (-0.5 - 0.866i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.5 + 0.866i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.5 - 0.866i)T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.5 - 0.866i)T \) |
| 73 | \( 1 + (-0.5 + 0.866i)T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.5 + 0.866i)T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + (0.5 - 0.866i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−31.75406057260301806634098342605, −30.53357101132164763694907273244, −29.72670999446343606950205950150, −28.03937235430777536166809515478, −27.06022694194801346339222393052, −26.34818585044432131444399124324, −24.30451253904436334254751113892, −23.9616419024873364602834261529, −22.94064644799917988655178787706, −22.02418294487774455926403746212, −20.70029461313036638090653572190, −18.95046119853194521723311259902, −17.683118437721936056811774503001, −16.5342570130870075984275853669, −15.96573475594861692800576793957, −14.4695173104064545173131230924, −13.23678186311826353809791194267, −11.76930160029831433054341407695, −11.031271429152391638770032900873, −8.7949787005019413646377449853, −7.34511709719885249237753894828, −6.44717073040779575553691573397, −4.748665435728808990981637705632, −3.907272198088155500716303514175, −0.392968661753235068133902321519,
1.605614027477762016544712379686, 3.792774676011730624974735138935, 4.97269422433706412783887676094, 6.280231976110708617601990382, 8.26010296180386642419264116570, 10.04289887145436619426864368884, 11.26579044910652061313989646192, 12.03425897527400506545833060125, 12.8889593667659695404067171531, 14.91244912601192965065026604534, 15.60407839487336089436821525913, 17.47607701129753836484755264747, 18.4774537723603339363446693944, 19.58855323712634491007562685155, 20.86571821762452884026011684249, 22.02967255902568043420152913862, 22.915753753597025997088078848539, 23.699553665515740370827658520652, 24.87982664334745961162416664224, 27.06274773957034568364486596669, 28.02202420453986381632179219950, 28.26449387887699286463649655299, 29.9040617185195413554333523040, 30.63261012936760442896219768931, 31.662558628188287243814363064692