| L(s) = 1 | + (0.967 − 0.251i)2-s + (0.873 − 0.487i)4-s + (−0.238 + 0.971i)5-s + (−0.292 − 0.956i)7-s + (0.721 − 0.691i)8-s + (0.0141 + 0.999i)10-s + (0.0988 + 0.995i)11-s + (−0.778 + 0.628i)13-s + (−0.524 − 0.851i)14-s + (0.524 − 0.851i)16-s + (0.911 + 0.411i)17-s + (0.899 − 0.437i)19-s + (0.265 + 0.964i)20-s + (0.346 + 0.938i)22-s + (0.960 − 0.279i)23-s + ⋯ |
| L(s) = 1 | + (0.967 − 0.251i)2-s + (0.873 − 0.487i)4-s + (−0.238 + 0.971i)5-s + (−0.292 − 0.956i)7-s + (0.721 − 0.691i)8-s + (0.0141 + 0.999i)10-s + (0.0988 + 0.995i)11-s + (−0.778 + 0.628i)13-s + (−0.524 − 0.851i)14-s + (0.524 − 0.851i)16-s + (0.911 + 0.411i)17-s + (0.899 − 0.437i)19-s + (0.265 + 0.964i)20-s + (0.346 + 0.938i)22-s + (0.960 − 0.279i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00818i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00818i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(2.583392728 + 0.01057154078i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.583392728 + 0.01057154078i\) |
| \(L(1)\) |
\(\approx\) |
\(1.850983287 - 0.08089335848i\) |
| \(L(1)\) |
\(\approx\) |
\(1.850983287 - 0.08089335848i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 223 | \( 1 \) |
| good | 2 | \( 1 + (0.967 - 0.251i)T \) |
| 5 | \( 1 + (-0.238 + 0.971i)T \) |
| 7 | \( 1 + (-0.292 - 0.956i)T \) |
| 11 | \( 1 + (0.0988 + 0.995i)T \) |
| 13 | \( 1 + (-0.778 + 0.628i)T \) |
| 17 | \( 1 + (0.911 + 0.411i)T \) |
| 19 | \( 1 + (0.899 - 0.437i)T \) |
| 23 | \( 1 + (0.960 - 0.279i)T \) |
| 29 | \( 1 + (0.999 + 0.0282i)T \) |
| 31 | \( 1 + (0.319 + 0.947i)T \) |
| 37 | \( 1 + (0.812 + 0.583i)T \) |
| 41 | \( 1 + (-0.942 - 0.333i)T \) |
| 43 | \( 1 + (0.844 + 0.536i)T \) |
| 47 | \( 1 + (-0.899 - 0.437i)T \) |
| 53 | \( 1 + (0.398 - 0.916i)T \) |
| 59 | \( 1 + (0.985 - 0.169i)T \) |
| 61 | \( 1 + (-0.155 - 0.987i)T \) |
| 67 | \( 1 + (0.0141 - 0.999i)T \) |
| 71 | \( 1 + (-0.346 + 0.938i)T \) |
| 73 | \( 1 + (-0.990 + 0.141i)T \) |
| 79 | \( 1 + (0.182 + 0.983i)T \) |
| 83 | \( 1 + (-0.844 + 0.536i)T \) |
| 89 | \( 1 + (0.238 + 0.971i)T \) |
| 97 | \( 1 + (-0.960 - 0.279i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.76100100067957113218173945091, −21.9933534782405716369100455134, −21.23546866534135340375791128888, −20.59037039091737473768896024220, −19.62334833635288591729645419473, −18.930430393475076443378786105914, −17.63323703255308589498829185447, −16.62025087913589023233379699912, −16.15822709330473748369854495033, −15.33357971763879777651841419290, −14.51672939384783867307586763476, −13.50260651138286196237401009654, −12.79662573384405202019336943051, −11.961862550207506617187019813029, −11.55857532384605728931561389666, −10.10554282619171410236825687761, −9.04214018189534643307681552285, −8.124889055534635366647689430396, −7.35825413109684241423194270400, −5.907728702630237238891531453234, −5.49767148291546764015688496571, −4.61299997149718411498991777796, −3.34943940807954876545929647652, −2.66425033750637879943430205415, −1.1032115023167052722028613819,
1.2913873234889591659455588432, 2.607341328104463412474612258680, 3.38344820513870746260589931397, 4.35089540230372689337969969661, 5.170026399234790229993156207673, 6.72774743063317401909276317929, 6.886940402134167028042627483760, 7.84611769587834053467413522886, 9.77301827713272833305256991405, 10.14702686774005033056486256927, 11.13985122167611363535019418868, 11.94089403715735014783384746841, 12.74378150815692363217771749822, 13.78825467001536987946904929328, 14.42260151891815908682453605414, 15.032321816551117098064253042509, 16.000498880959271201617356925933, 16.88820170557916150610552289505, 17.8568575226003812631453530111, 19.06549644839046048482001978940, 19.59322826032559579934811728523, 20.345606531527054630747970281530, 21.3038336980702001795317328193, 22.07215866398439985201225360276, 22.91644636030845009844734581908