L(s) = 1 | + (0.292 + 0.956i)2-s + (−0.828 + 0.559i)4-s + (−0.933 − 0.359i)5-s + (−0.996 + 0.0848i)7-s + (−0.778 − 0.628i)8-s + (0.0706 − 0.997i)10-s + (0.475 − 0.879i)11-s + (0.967 + 0.251i)13-s + (−0.372 − 0.927i)14-s + (0.372 − 0.927i)16-s + (−0.524 − 0.851i)17-s + (−0.639 + 0.769i)19-s + (0.974 − 0.224i)20-s + (0.980 + 0.196i)22-s + (0.155 + 0.987i)23-s + ⋯ |
L(s) = 1 | + (0.292 + 0.956i)2-s + (−0.828 + 0.559i)4-s + (−0.933 − 0.359i)5-s + (−0.996 + 0.0848i)7-s + (−0.778 − 0.628i)8-s + (0.0706 − 0.997i)10-s + (0.475 − 0.879i)11-s + (0.967 + 0.251i)13-s + (−0.372 − 0.927i)14-s + (0.372 − 0.927i)16-s + (−0.524 − 0.851i)17-s + (−0.639 + 0.769i)19-s + (0.974 − 0.224i)20-s + (0.980 + 0.196i)22-s + (0.155 + 0.987i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0141 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0141 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6851010131 + 0.6948813025i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6851010131 + 0.6948813025i\) |
\(L(1)\) |
\(\approx\) |
\(0.7771135076 + 0.4060337862i\) |
\(L(1)\) |
\(\approx\) |
\(0.7771135076 + 0.4060337862i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 223 | \( 1 \) |
good | 2 | \( 1 + (0.292 + 0.956i)T \) |
| 5 | \( 1 + (-0.933 - 0.359i)T \) |
| 7 | \( 1 + (-0.996 + 0.0848i)T \) |
| 11 | \( 1 + (0.475 - 0.879i)T \) |
| 13 | \( 1 + (0.967 + 0.251i)T \) |
| 17 | \( 1 + (-0.524 - 0.851i)T \) |
| 19 | \( 1 + (-0.639 + 0.769i)T \) |
| 23 | \( 1 + (0.155 + 0.987i)T \) |
| 29 | \( 1 + (0.990 - 0.141i)T \) |
| 31 | \( 1 + (0.998 + 0.0565i)T \) |
| 37 | \( 1 + (-0.999 - 0.0282i)T \) |
| 41 | \( 1 + (0.127 + 0.991i)T \) |
| 43 | \( 1 + (-0.951 - 0.306i)T \) |
| 47 | \( 1 + (0.639 + 0.769i)T \) |
| 53 | \( 1 + (0.886 - 0.462i)T \) |
| 59 | \( 1 + (0.660 + 0.750i)T \) |
| 61 | \( 1 + (-0.702 + 0.712i)T \) |
| 67 | \( 1 + (0.0706 + 0.997i)T \) |
| 71 | \( 1 + (-0.980 + 0.196i)T \) |
| 73 | \( 1 + (-0.759 - 0.649i)T \) |
| 79 | \( 1 + (0.795 - 0.605i)T \) |
| 83 | \( 1 + (0.951 - 0.306i)T \) |
| 89 | \( 1 + (0.933 - 0.359i)T \) |
| 97 | \( 1 + (-0.155 + 0.987i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.57456638244492900658393894163, −21.907878150126148422643297070350, −20.81080238477084959958017441270, −19.965230704295979111326698944961, −19.48802705052278771786781008128, −18.795760918052383131081005847, −17.884794118813029704183248819590, −16.93138815395736808795491248430, −15.57913979708396253414668072380, −15.24283978706522089043680734000, −14.11758839468381027995754513508, −13.16289934053168195371221623002, −12.45898803796654370334160765842, −11.78253806109687236151209887042, −10.64417488923907887089000200188, −10.307964286346708080278190993730, −8.98197089961211352576580824669, −8.386923845637125069116628493502, −6.84678497806701746211475893697, −6.27236354407714370174753047002, −4.71633415267495239465666266749, −3.97782826376347471849389106782, −3.20630668678626958607760094936, −2.15544526341494217320108867748, −0.63450631009322735646434280600,
0.86755952530120222809098303922, 3.104609133507136806122870913773, 3.75313750714829799838520979001, 4.65513378312395512439931971272, 5.89388005059217966331175222671, 6.54881801001495120851549571483, 7.47312821495159063409319001718, 8.61251362640917292253925964539, 8.9047600880229704359377636070, 10.17417621650585127994161390887, 11.55748670406116681106245054942, 12.14826066585761791840997672198, 13.30196028028930734684766175601, 13.69870395687034419060878587519, 14.90094007453274003781055049758, 15.81814199328169323217956504390, 16.15043403137066683360314015476, 16.87249750566495509081245628929, 17.974540975905988846756747128697, 19.03892873210620175957643478975, 19.3754275893202082510676615178, 20.6621625430266745263804187614, 21.533410209267423161825692677265, 22.47452297773581304691923969044, 23.15516137861209796683032010804