L(s) = 1 | + (0.828 − 0.559i)2-s + (0.372 − 0.927i)4-s + (0.210 − 0.977i)5-s + (0.985 − 0.169i)7-s + (−0.210 − 0.977i)8-s + (−0.372 − 0.927i)10-s + (−0.450 + 0.892i)11-s + (−0.873 − 0.487i)13-s + (0.721 − 0.691i)14-s + (−0.721 − 0.691i)16-s + (0.450 − 0.892i)17-s + (0.942 + 0.333i)19-s + (−0.828 − 0.559i)20-s + (0.127 + 0.991i)22-s + (0.210 − 0.977i)23-s + ⋯ |
L(s) = 1 | + (0.828 − 0.559i)2-s + (0.372 − 0.927i)4-s + (0.210 − 0.977i)5-s + (0.985 − 0.169i)7-s + (−0.210 − 0.977i)8-s + (−0.372 − 0.927i)10-s + (−0.450 + 0.892i)11-s + (−0.873 − 0.487i)13-s + (0.721 − 0.691i)14-s + (−0.721 − 0.691i)16-s + (0.450 − 0.892i)17-s + (0.942 + 0.333i)19-s + (−0.828 − 0.559i)20-s + (0.127 + 0.991i)22-s + (0.210 − 0.977i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.546 - 0.837i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 669 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.546 - 0.837i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.173925417 - 2.168446355i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.173925417 - 2.168446355i\) |
\(L(1)\) |
\(\approx\) |
\(1.434656307 - 1.068640118i\) |
\(L(1)\) |
\(\approx\) |
\(1.434656307 - 1.068640118i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 223 | \( 1 \) |
good | 2 | \( 1 + (0.828 - 0.559i)T \) |
| 5 | \( 1 + (0.210 - 0.977i)T \) |
| 7 | \( 1 + (0.985 - 0.169i)T \) |
| 11 | \( 1 + (-0.450 + 0.892i)T \) |
| 13 | \( 1 + (-0.873 - 0.487i)T \) |
| 17 | \( 1 + (0.450 - 0.892i)T \) |
| 19 | \( 1 + (0.942 + 0.333i)T \) |
| 23 | \( 1 + (0.210 - 0.977i)T \) |
| 29 | \( 1 + (0.721 + 0.691i)T \) |
| 31 | \( 1 + (-0.594 + 0.803i)T \) |
| 37 | \( 1 + (-0.450 - 0.892i)T \) |
| 41 | \( 1 + (0.967 - 0.251i)T \) |
| 43 | \( 1 + (-0.911 + 0.411i)T \) |
| 47 | \( 1 + (-0.942 + 0.333i)T \) |
| 53 | \( 1 + (0.996 + 0.0848i)T \) |
| 59 | \( 1 + (-0.127 + 0.991i)T \) |
| 61 | \( 1 + (-0.873 - 0.487i)T \) |
| 67 | \( 1 + (-0.372 + 0.927i)T \) |
| 71 | \( 1 + (-0.127 + 0.991i)T \) |
| 73 | \( 1 + (0.778 - 0.628i)T \) |
| 79 | \( 1 + (0.967 - 0.251i)T \) |
| 83 | \( 1 + (0.911 + 0.411i)T \) |
| 89 | \( 1 + (-0.210 - 0.977i)T \) |
| 97 | \( 1 + (-0.210 - 0.977i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.10613515990310743946326429094, −22.1537666143381080693492482662, −21.50087441663828096234740295483, −21.156844081809483856449159252504, −19.851478691694958009412763317965, −18.87359221154651658940056445133, −17.95998683079238722306250356352, −17.265506789871210514096547758102, −16.40116179320840274524007588061, −15.22358059383662769718310987118, −14.885037968036011822545524751246, −13.88866333558806440997547117673, −13.500654444782122062357128016303, −12.088891863814721469703937694337, −11.469809224163345097898946443163, −10.7028847604246866016019018991, −9.47782834661811286792000072416, −8.13574405481494172271719329757, −7.62142544260693728395814963115, −6.61894334202350988031517414938, −5.6739266177572868897353680916, −4.97388245336846114748829222254, −3.7380488450097229739747692990, −2.859879945519363788817562794, −1.859897638454909455196483842728,
0.93222813377850504085725763407, 1.9210805531295366710854036019, 2.936966276143058943107708161363, 4.34818343305828201772653621706, 5.04758307593836960756199009650, 5.44254262628509092470890632906, 7.02855628409293909180163319815, 7.840156853417835655324856520573, 9.09919004147091416908338717167, 9.98398645791844947121603984945, 10.73387268300369496364046650014, 11.99500635725023617295131442712, 12.30670846027935734756376120007, 13.220283858954722995925835836048, 14.219428082353985436872641415661, 14.71444585308644451091887475407, 15.829359028064374490226385339417, 16.564977621256842099629339749395, 17.797815703840091401368132974586, 18.26307034932531051288868619055, 19.74389696198628895046333588713, 20.19910004936776392857849520256, 20.91605151956506181706239335191, 21.432592022867834819733865278763, 22.58086222918698371742406370050