| L(s) = 1 | + (0.606 − 0.795i)3-s + (0.338 + 0.941i)5-s + (0.409 − 0.912i)7-s + (−0.264 − 0.964i)9-s + (0.953 − 0.301i)11-s + (0.896 − 0.443i)13-s + (0.953 + 0.301i)15-s + (0.190 + 0.981i)17-s + (0.997 − 0.0765i)19-s + (−0.477 − 0.878i)21-s + (−0.720 + 0.693i)23-s + (−0.771 + 0.636i)25-s + (−0.927 − 0.373i)27-s + (−0.988 + 0.152i)29-s + (−0.0383 + 0.999i)31-s + ⋯ |
| L(s) = 1 | + (0.606 − 0.795i)3-s + (0.338 + 0.941i)5-s + (0.409 − 0.912i)7-s + (−0.264 − 0.964i)9-s + (0.953 − 0.301i)11-s + (0.896 − 0.443i)13-s + (0.953 + 0.301i)15-s + (0.190 + 0.981i)17-s + (0.997 − 0.0765i)19-s + (−0.477 − 0.878i)21-s + (−0.720 + 0.693i)23-s + (−0.771 + 0.636i)25-s + (−0.927 − 0.373i)27-s + (−0.988 + 0.152i)29-s + (−0.0383 + 0.999i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.711 - 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 664 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.711 - 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.961500440 - 0.8050581527i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.961500440 - 0.8050581527i\) |
| \(L(1)\) |
\(\approx\) |
\(1.477418627 - 0.3564832515i\) |
| \(L(1)\) |
\(\approx\) |
\(1.477418627 - 0.3564832515i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 83 | \( 1 \) |
| good | 3 | \( 1 + (0.606 - 0.795i)T \) |
| 5 | \( 1 + (0.338 + 0.941i)T \) |
| 7 | \( 1 + (0.409 - 0.912i)T \) |
| 11 | \( 1 + (0.953 - 0.301i)T \) |
| 13 | \( 1 + (0.896 - 0.443i)T \) |
| 17 | \( 1 + (0.190 + 0.981i)T \) |
| 19 | \( 1 + (0.997 - 0.0765i)T \) |
| 23 | \( 1 + (-0.720 + 0.693i)T \) |
| 29 | \( 1 + (-0.988 + 0.152i)T \) |
| 31 | \( 1 + (-0.0383 + 0.999i)T \) |
| 37 | \( 1 + (0.264 - 0.964i)T \) |
| 41 | \( 1 + (-0.859 - 0.511i)T \) |
| 43 | \( 1 + (0.927 - 0.373i)T \) |
| 47 | \( 1 + (-0.973 - 0.227i)T \) |
| 53 | \( 1 + (-0.973 + 0.227i)T \) |
| 59 | \( 1 + (0.817 + 0.575i)T \) |
| 61 | \( 1 + (0.665 - 0.746i)T \) |
| 67 | \( 1 + (0.543 + 0.839i)T \) |
| 71 | \( 1 + (-0.409 - 0.912i)T \) |
| 73 | \( 1 + (0.771 + 0.636i)T \) |
| 79 | \( 1 + (0.477 - 0.878i)T \) |
| 89 | \( 1 + (0.114 - 0.993i)T \) |
| 97 | \( 1 + (0.114 + 0.993i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.45891694985535655334850733614, −22.15169433782455969446978774840, −20.95262478838049578198591464816, −20.6843733579947194382316153262, −19.924685283071336943789317120446, −18.808640066089754549879699104981, −18.037635732221279456370994443596, −16.88750781132318375413718361924, −16.24613950318164747251394960723, −15.55598203998748182324611467, −14.546364859103103727153089207941, −13.91995310942720408094545873614, −12.99788583406390503565033702965, −11.80911292189917438605977370216, −11.33504551149907842726043438476, −9.70796516923908216574271117735, −9.442068174367842256384978714903, −8.56957689490256324681666298638, −7.85573931388659013175948312690, −6.29787607910724230467029565307, −5.33135218926843059995509224776, −4.57020935014239502856419302945, −3.637198990016126192038098406259, −2.36522055500308890650031089282, −1.406784732874941447740192064692,
1.17266630355536783683943875124, 1.93672373197690777255713097570, 3.51814704335360166452997761479, 3.6626001000130160308902195580, 5.62470384257640448062178380667, 6.45156442184562250372592670862, 7.273212676261292434873677436708, 7.98102109250933159484363472576, 9.00695976201425551171618677943, 10.02048344118472805834581886127, 10.97226022613133572489284703781, 11.69398471474007524515785760005, 12.89289635425322695973871381980, 13.749659995186145036613766841912, 14.21785550586131072150737355795, 14.90521493679638774464085157995, 16.04299480736863870320592080125, 17.33445486769165007763314734077, 17.76544350996700563678599988741, 18.61166582301964980226317649583, 19.45428967578692862452178614663, 20.09785777502496012318311050736, 20.94502644227685376999217340495, 21.91922078406409406050437849713, 22.80388729414859386878538687706