| L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.5i)4-s + (0.923 + 0.382i)5-s + (0.130 − 0.991i)7-s + (−0.707 − 0.707i)8-s + (−0.793 − 0.608i)10-s + (−0.608 + 0.793i)11-s + (−0.382 + 0.923i)14-s + (0.5 + 0.866i)16-s + (−0.258 − 0.965i)19-s + (0.608 + 0.793i)20-s + (0.793 − 0.608i)22-s + (0.608 − 0.793i)23-s + (0.707 + 0.707i)25-s + (0.608 − 0.793i)28-s + (0.130 + 0.991i)29-s + ⋯ |
| L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.5i)4-s + (0.923 + 0.382i)5-s + (0.130 − 0.991i)7-s + (−0.707 − 0.707i)8-s + (−0.793 − 0.608i)10-s + (−0.608 + 0.793i)11-s + (−0.382 + 0.923i)14-s + (0.5 + 0.866i)16-s + (−0.258 − 0.965i)19-s + (0.608 + 0.793i)20-s + (0.793 − 0.608i)22-s + (0.608 − 0.793i)23-s + (0.707 + 0.707i)25-s + (0.608 − 0.793i)28-s + (0.130 + 0.991i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 663 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.768 - 0.640i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 663 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.768 - 0.640i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9983189906 - 0.3613343090i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9983189906 - 0.3613343090i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8350715869 - 0.1396519250i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8350715869 - 0.1396519250i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (-0.965 - 0.258i)T \) |
| 5 | \( 1 + (0.923 + 0.382i)T \) |
| 7 | \( 1 + (0.130 - 0.991i)T \) |
| 11 | \( 1 + (-0.608 + 0.793i)T \) |
| 19 | \( 1 + (-0.258 - 0.965i)T \) |
| 23 | \( 1 + (0.608 - 0.793i)T \) |
| 29 | \( 1 + (0.130 + 0.991i)T \) |
| 31 | \( 1 + (0.382 - 0.923i)T \) |
| 37 | \( 1 + (0.991 - 0.130i)T \) |
| 41 | \( 1 + (-0.793 - 0.608i)T \) |
| 43 | \( 1 + (0.965 - 0.258i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.707 - 0.707i)T \) |
| 59 | \( 1 + (0.965 - 0.258i)T \) |
| 61 | \( 1 + (-0.130 + 0.991i)T \) |
| 67 | \( 1 + (0.5 + 0.866i)T \) |
| 71 | \( 1 + (0.608 + 0.793i)T \) |
| 73 | \( 1 + (-0.923 - 0.382i)T \) |
| 79 | \( 1 + (0.382 + 0.923i)T \) |
| 83 | \( 1 + (-0.707 + 0.707i)T \) |
| 89 | \( 1 + (0.866 - 0.5i)T \) |
| 97 | \( 1 + (-0.793 + 0.608i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.05405794910717118147646063328, −21.65924733128842618039778181624, −21.25631699626809998543215712347, −20.50497596420825093197392407044, −19.32196751687709475469144168596, −18.69495189851700373043044978720, −17.975836228719653158307018942736, −17.2309574766263436856756554537, −16.39383179125599898354966582789, −15.67232319086080730541108002389, −14.77337433937647635041948928867, −13.84436736711044637658037435423, −12.80219842470979075880052446787, −11.84836502647346526029065438820, −10.91802602859297694892426294056, −10.00194939451171408206354458857, −9.25007933592636625341929828139, −8.4851415453129335978122086571, −7.76509616416422873080108645683, −6.31269909653289976964651994365, −5.82312956633888458649440977, −4.96583604557609965171000004524, −3.03520470809621519164796195203, −2.17183383594264247671043357401, −1.12606497898399434199693080950,
0.833291072254444469163806603422, 2.07974130386822974764350709215, 2.82529150774394586888320965977, 4.18759046465157251081528086611, 5.428558982130161937962762002668, 6.82393571919899661675172540253, 7.087307274185451999672270751360, 8.2824028855343598203613622439, 9.27268177466408878033655425029, 10.14061154061412579335714861663, 10.60596937138364453806271887741, 11.45472811139214286747945935512, 12.78157331020399033652931375236, 13.32936157233464835990511292762, 14.52257054038966894236759426155, 15.31642815847031706787649232919, 16.461281184301830035681007769638, 17.156409058544393971852644442447, 17.7984887934284283917007324630, 18.436342418573864187446690687712, 19.40582729068556245765232441589, 20.36124708329998303755699600056, 20.796338595109106978365547148685, 21.69860883449543625883061256538, 22.58424845815287877809955366281