| L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.5 + 0.866i)4-s + (−0.707 + 0.707i)5-s + (−0.965 + 0.258i)7-s − 8-s + (−0.965 − 0.258i)10-s + (0.258 − 0.965i)11-s + (−0.707 − 0.707i)14-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)19-s + (−0.258 − 0.965i)20-s + (0.965 − 0.258i)22-s + (−0.965 − 0.258i)23-s − i·25-s + (0.258 − 0.965i)28-s + (0.258 − 0.965i)29-s + ⋯ |
| L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.5 + 0.866i)4-s + (−0.707 + 0.707i)5-s + (−0.965 + 0.258i)7-s − 8-s + (−0.965 − 0.258i)10-s + (0.258 − 0.965i)11-s + (−0.707 − 0.707i)14-s + (−0.5 − 0.866i)16-s + (−0.5 + 0.866i)19-s + (−0.258 − 0.965i)20-s + (0.965 − 0.258i)22-s + (−0.965 − 0.258i)23-s − i·25-s + (0.258 − 0.965i)28-s + (0.258 − 0.965i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 663 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.561 - 0.827i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 663 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.561 - 0.827i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2059361702 - 0.1091672773i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2059361702 - 0.1091672773i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6604776004 + 0.4093187867i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6604776004 + 0.4093187867i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 7 | \( 1 + (-0.965 + 0.258i)T \) |
| 11 | \( 1 + (0.258 - 0.965i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.965 - 0.258i)T \) |
| 29 | \( 1 + (0.258 - 0.965i)T \) |
| 31 | \( 1 + (-0.707 + 0.707i)T \) |
| 37 | \( 1 + (-0.965 - 0.258i)T \) |
| 41 | \( 1 + (0.258 - 0.965i)T \) |
| 43 | \( 1 + (0.866 + 0.5i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + iT \) |
| 59 | \( 1 + (0.5 - 0.866i)T \) |
| 61 | \( 1 + (-0.258 - 0.965i)T \) |
| 67 | \( 1 + (0.866 - 0.5i)T \) |
| 71 | \( 1 + (0.258 + 0.965i)T \) |
| 73 | \( 1 + (-0.707 + 0.707i)T \) |
| 79 | \( 1 + (0.707 - 0.707i)T \) |
| 83 | \( 1 - T \) |
| 89 | \( 1 + (-0.866 + 0.5i)T \) |
| 97 | \( 1 + (0.258 + 0.965i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.68823596772371874103764834990, −22.32300146917160614812809856184, −21.18849346588781952066157214106, −20.33394580311443296871727291314, −19.7474119221796719318787006057, −19.30400159782975587502614163028, −18.173615275784959605487774887286, −17.23468065396409356569492509236, −16.154345847798370332037501666543, −15.440954184437698994740039475344, −14.56866635174921713399466128357, −13.45263538901476209956976727166, −12.7523814780253426362593987835, −12.21388890117056632743608125406, −11.31543327226775296029004102458, −10.31083263829932585790352656788, −9.46537734911340018818130654277, −8.77431231242731264055686300984, −7.429517862033484896882865271724, −6.43757046362742852273562091769, −5.26802634149766169062192541781, −4.3188486036339573512087177666, −3.70075335882204629642388955660, −2.534190380851908193350581385823, −1.29036191836641756780011951746,
0.100259058088660342619455440732, 2.527612652119486004236767387902, 3.56707210485690733888334385244, 4.02472547406996476301367910953, 5.57688981211094054549487429548, 6.27995007348014048775366184028, 7.010279925009813733338910483653, 8.03945917284797712960136419446, 8.74628414023884730879085485095, 9.89760363306028709433993722318, 10.975409759650942466770836911603, 12.07366197569126813275538810386, 12.60087391448817123471835387955, 13.82763710039864351582314791695, 14.31997054799897200697159613110, 15.36667627454070019421256039162, 15.97509299381709926127106586099, 16.57601204781314995758397789618, 17.626971547036380231766375788820, 18.735222640184800355038217525891, 19.08862031591128234188473914934, 20.21107856916567303197016579542, 21.47562225012958194686164692153, 22.041432057146598142762973851638, 22.8429363832450336510344450851