| L(s) = 1 | − i·2-s − 4-s − 5-s + 7-s + i·8-s + i·10-s − 11-s − i·14-s + 16-s + i·19-s + 20-s + i·22-s − i·23-s + 25-s − 28-s − i·29-s + ⋯ |
| L(s) = 1 | − i·2-s − 4-s − 5-s + 7-s + i·8-s + i·10-s − 11-s − i·14-s + 16-s + i·19-s + 20-s + i·22-s − i·23-s + 25-s − 28-s − i·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 663 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.360 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 663 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.360 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5434094560 - 0.7926919535i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5434094560 - 0.7926919535i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7277070457 - 0.4412961150i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7277070457 - 0.4412961150i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 13 | \( 1 \) |
| 17 | \( 1 \) |
| good | 2 | \( 1 \) |
| 5 | \( 1 - iT \) |
| 7 | \( 1 \) |
| 11 | \( 1 - T \) |
| 19 | \( 1 + T \) |
| 23 | \( 1 + iT \) |
| 29 | \( 1 \) |
| 31 | \( 1 + iT \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 \) |
| 43 | \( 1 \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 \) |
| 59 | \( 1 + T \) |
| 61 | \( 1 \) |
| 67 | \( 1 \) |
| 71 | \( 1 + iT \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 \) |
| 83 | \( 1 + iT \) |
| 89 | \( 1 - iT \) |
| 97 | \( 1 \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.33365983702561582215842383491, −22.50455829826235073601542863259, −21.50313284911740481211518981114, −20.71829676777437117505942945970, −19.57180038603555409347620670604, −18.85337597864263979846368342777, −17.86735724023192935280394396294, −17.4341586983194023092677815402, −16.17122737648658602245182705471, −15.65103184965725346021269506021, −14.96956237225984038475234691954, −14.11326775180142637828901377214, −13.21575821773731888853617953467, −12.2742068780983662781088704296, −11.259721658458254769571228496611, −10.436237827707128068785710584238, −9.102683414926896142423108831356, −8.333852235742160284364129939949, −7.598182603763783030284947120458, −7.01155197648566210875638802943, −5.58791965085786549365278117305, −4.86172980097771225306270400586, −4.06967954689886066806520499354, −2.81829359026213437537272708224, −1.014438026012325277048935451853,
0.61746547167455524904543973471, 1.9797980196139860341693635144, 2.96854646978589449938593796600, 4.125652861416185951842521701047, 4.725986334017340690010972203530, 5.785081551446155807356912392185, 7.4941142059723920710075750942, 8.13939763852917748182007563927, 8.81302550902064508710317452247, 10.25947252855598180109309318131, 10.714863230855555461857478920578, 11.73461446787490959563171119146, 12.201461768270791396504008648486, 13.20045130379471310811495031621, 14.18934968191630862473184651489, 14.92796486749394424139320704377, 15.87055706949818880365213854965, 16.964291193858436058339930572897, 17.89944837007234610678858300670, 18.661006104233903836114515951488, 19.21863470246612562479995522210, 20.29463807410398132063234153829, 20.837767479889117477865564914079, 21.41929264901304983603551303948, 22.76624931759189045852402751077