L(s) = 1 | + (−0.168 − 0.985i)2-s + (−0.926 − 0.377i)3-s + (−0.943 + 0.331i)4-s + (−0.215 + 0.976i)6-s + (0.120 − 0.992i)7-s + (0.485 + 0.873i)8-s + (0.715 + 0.698i)9-s + (−0.715 + 0.698i)11-s + (0.998 + 0.0483i)12-s + (−0.998 + 0.0483i)14-s + (0.779 − 0.626i)16-s + (−0.485 − 0.873i)17-s + (0.568 − 0.822i)18-s + (0.809 − 0.587i)19-s + (−0.485 + 0.873i)21-s + (0.809 + 0.587i)22-s + ⋯ |
L(s) = 1 | + (−0.168 − 0.985i)2-s + (−0.926 − 0.377i)3-s + (−0.943 + 0.331i)4-s + (−0.215 + 0.976i)6-s + (0.120 − 0.992i)7-s + (0.485 + 0.873i)8-s + (0.715 + 0.698i)9-s + (−0.715 + 0.698i)11-s + (0.998 + 0.0483i)12-s + (−0.998 + 0.0483i)14-s + (0.779 − 0.626i)16-s + (−0.485 − 0.873i)17-s + (0.568 − 0.822i)18-s + (0.809 − 0.587i)19-s + (−0.485 + 0.873i)21-s + (0.809 + 0.587i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.789 + 0.613i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.789 + 0.613i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1945411059 + 0.06674775007i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1945411059 + 0.06674775007i\) |
\(L(1)\) |
\(\approx\) |
\(0.4656260354 - 0.3247471847i\) |
\(L(1)\) |
\(\approx\) |
\(0.4656260354 - 0.3247471847i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.168 - 0.985i)T \) |
| 3 | \( 1 + (-0.926 - 0.377i)T \) |
| 7 | \( 1 + (0.120 - 0.992i)T \) |
| 11 | \( 1 + (-0.715 + 0.698i)T \) |
| 17 | \( 1 + (-0.485 - 0.873i)T \) |
| 19 | \( 1 + (0.809 - 0.587i)T \) |
| 23 | \( 1 + (-0.309 + 0.951i)T \) |
| 29 | \( 1 + (-0.989 - 0.144i)T \) |
| 31 | \( 1 + (-0.215 + 0.976i)T \) |
| 37 | \( 1 + (-0.861 - 0.506i)T \) |
| 41 | \( 1 + (0.527 + 0.849i)T \) |
| 43 | \( 1 + (0.748 + 0.663i)T \) |
| 47 | \( 1 + (0.0241 - 0.999i)T \) |
| 53 | \( 1 + (0.681 - 0.732i)T \) |
| 59 | \( 1 + (0.998 + 0.0483i)T \) |
| 61 | \( 1 + (0.981 + 0.192i)T \) |
| 67 | \( 1 + (-0.943 - 0.331i)T \) |
| 71 | \( 1 + (-0.926 - 0.377i)T \) |
| 73 | \( 1 + (0.715 - 0.698i)T \) |
| 79 | \( 1 + (0.0241 - 0.999i)T \) |
| 83 | \( 1 + (0.926 - 0.377i)T \) |
| 89 | \( 1 + (-0.309 + 0.951i)T \) |
| 97 | \( 1 + (-0.262 + 0.964i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.1930812331145382305993185567, −17.53634096414325571494988589482, −16.89931507354225533768872036280, −16.15430711944128320478345252586, −15.797965880656339470883150440053, −15.11711726700254876973622158158, −14.53470974437305697585003293445, −13.614772848557598344490928850322, −12.79138497581125676084637069833, −12.31940368045640033308836753341, −11.36738575746324853607923046866, −10.67469217792352859636691859092, −10.02680294712759896696837236603, −9.21361914641751404803446516920, −8.60132550520211538464023199436, −7.87787042825726848424505441950, −7.04350904320721554393680332150, −6.1674382742036145178192937588, −5.63461238705424398086143188512, −5.33025869264205806225242313628, −4.28450436767378236937743026422, −3.66914619751518446682024768965, −2.40759137640736223229821519590, −1.25120582618441516186231538485, −0.09526010202791936133319156375,
0.83235008027506487681928547949, 1.65470165923428650342998238583, 2.427825980343162730279946481343, 3.47119534098210645054937874092, 4.27538489532290137505501041832, 5.05394105466262303621301336900, 5.41667473198434430838941814730, 6.75960733504147473628869151414, 7.43798037133733390318246742442, 7.791118970469225035900660715811, 9.03203846705784708276844126484, 9.76990820288397333109452561997, 10.34116402009369533585030352112, 11.00581080803524398639187467489, 11.53524158107266528188958624157, 12.14885687819674121856842865615, 13.04685353651770619297599535112, 13.38427049324873267254698051502, 13.99563843063438614811943780671, 15.026351532493156281663706533951, 16.12491633515674474814779484418, 16.44596802025640102753441488650, 17.58273738806324906810640315086, 17.79299717547257816227600273850, 18.17837747345210806731645938491