L(s) = 1 | + (0.561 − 0.827i)2-s + (−0.857 + 0.513i)3-s + (−0.369 − 0.929i)4-s + (−0.0563 + 0.998i)6-s + (−0.316 + 0.948i)7-s + (−0.976 − 0.215i)8-s + (0.471 − 0.881i)9-s + (0.471 + 0.881i)11-s + (0.794 + 0.607i)12-s + (0.607 + 0.794i)14-s + (−0.726 + 0.686i)16-s + (0.301 + 0.953i)17-s + (−0.464 − 0.885i)18-s + (0.913 + 0.406i)19-s + (−0.215 − 0.976i)21-s + (0.994 + 0.104i)22-s + ⋯ |
L(s) = 1 | + (0.561 − 0.827i)2-s + (−0.857 + 0.513i)3-s + (−0.369 − 0.929i)4-s + (−0.0563 + 0.998i)6-s + (−0.316 + 0.948i)7-s + (−0.976 − 0.215i)8-s + (0.471 − 0.881i)9-s + (0.471 + 0.881i)11-s + (0.794 + 0.607i)12-s + (0.607 + 0.794i)14-s + (−0.726 + 0.686i)16-s + (0.301 + 0.953i)17-s + (−0.464 − 0.885i)18-s + (0.913 + 0.406i)19-s + (−0.215 − 0.976i)21-s + (0.994 + 0.104i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4225 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0978 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4225 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.0978 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.443942244 + 1.308906507i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.443942244 + 1.308906507i\) |
\(L(1)\) |
\(\approx\) |
\(1.041608813 + 0.01824770348i\) |
\(L(1)\) |
\(\approx\) |
\(1.041608813 + 0.01824770348i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (0.561 - 0.827i)T \) |
| 3 | \( 1 + (-0.857 + 0.513i)T \) |
| 7 | \( 1 + (-0.316 + 0.948i)T \) |
| 11 | \( 1 + (0.471 + 0.881i)T \) |
| 17 | \( 1 + (0.301 + 0.953i)T \) |
| 19 | \( 1 + (0.913 + 0.406i)T \) |
| 23 | \( 1 + (-0.743 + 0.669i)T \) |
| 29 | \( 1 + (0.789 - 0.613i)T \) |
| 31 | \( 1 + (-0.836 - 0.548i)T \) |
| 37 | \( 1 + (-0.988 + 0.152i)T \) |
| 41 | \( 1 + (-0.0884 + 0.996i)T \) |
| 43 | \( 1 + (0.160 + 0.987i)T \) |
| 47 | \( 1 + (0.896 - 0.443i)T \) |
| 53 | \( 1 + (0.0965 + 0.995i)T \) |
| 59 | \( 1 + (0.991 + 0.128i)T \) |
| 61 | \( 1 + (0.870 + 0.493i)T \) |
| 67 | \( 1 + (0.929 + 0.369i)T \) |
| 71 | \( 1 + (0.999 - 0.0161i)T \) |
| 73 | \( 1 + (0.849 + 0.527i)T \) |
| 79 | \( 1 + (0.443 + 0.896i)T \) |
| 83 | \( 1 + (0.873 - 0.485i)T \) |
| 89 | \( 1 + (0.669 + 0.743i)T \) |
| 97 | \( 1 + (-0.650 + 0.759i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.79054316737964629311364308519, −17.31995141075449945961502634484, −16.50026177298112738382957648558, −16.18490960922771677617432441541, −15.68796436314868874980939499438, −14.31778119015007335090578417695, −13.93352733816932010380376556753, −13.54681779599413323476555210498, −12.55079490101850178766243404249, −12.143452343517497424229403141, −11.34171337126296128041448124441, −10.677452782287243298413269193162, −9.790271958674218829668373379832, −8.86501353861281973868841525488, −8.085194034780667867172545647012, −7.17517077644748228372887199084, −6.95070621560760705721388935229, −6.19885354560843210637029782709, −5.34091372875892204599230874690, −4.92682366850701215406784548934, −3.84620952480235280973517727966, −3.33859870993178326446553115933, −2.16849750638952078539959332237, −0.78008168465741035696293782472, −0.408008349125158065214397087623,
0.89265901117256506594891626141, 1.696962270387223182584148920647, 2.543515149028550742976276392305, 3.64612100186786908454504437074, 3.99833724815387153609686317790, 5.01164321376117600946331335556, 5.55241906431049154458884204075, 6.153638733585544837607407971810, 6.85065042605776855476996500777, 8.06808050299051053450174736726, 9.094056468629710225076038665060, 9.76562663419484514781537107313, 10.01870528218810781399521659888, 10.97764927887273421312638820809, 11.702003597250794486818428091206, 12.16333855727201604621226498671, 12.5801605539410076084208879242, 13.43007353632175317079532045211, 14.405520950514315831911437204870, 14.9911830383747908631535972682, 15.55496732205561324921429280970, 16.16792537480416954301653252110, 17.13965128474512399007323963319, 17.8267110007880178421008160069, 18.341657748329046120463208400456