L(s) = 1 | + (−0.152 − 0.988i)2-s + (0.478 − 0.877i)3-s + (−0.953 + 0.301i)4-s + (−0.940 − 0.339i)6-s + (−0.0402 − 0.999i)7-s + (0.443 + 0.896i)8-s + (−0.541 − 0.840i)9-s + (0.840 + 0.541i)11-s + (−0.192 + 0.981i)12-s + (−0.981 + 0.192i)14-s + (0.818 − 0.574i)16-s + (−0.832 − 0.554i)17-s + (−0.748 + 0.663i)18-s + (−0.994 − 0.104i)19-s + (−0.896 − 0.443i)21-s + (0.406 − 0.913i)22-s + ⋯ |
L(s) = 1 | + (−0.152 − 0.988i)2-s + (0.478 − 0.877i)3-s + (−0.953 + 0.301i)4-s + (−0.940 − 0.339i)6-s + (−0.0402 − 0.999i)7-s + (0.443 + 0.896i)8-s + (−0.541 − 0.840i)9-s + (0.840 + 0.541i)11-s + (−0.192 + 0.981i)12-s + (−0.981 + 0.192i)14-s + (0.818 − 0.574i)16-s + (−0.832 − 0.554i)17-s + (−0.748 + 0.663i)18-s + (−0.994 − 0.104i)19-s + (−0.896 − 0.443i)21-s + (0.406 − 0.913i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.241 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.241 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.6367100478 - 0.8143621322i\) |
\(L(\frac12)\) |
\(\approx\) |
\(-0.6367100478 - 0.8143621322i\) |
\(L(1)\) |
\(\approx\) |
\(0.5213676005 - 0.7846843868i\) |
\(L(1)\) |
\(\approx\) |
\(0.5213676005 - 0.7846843868i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.152 - 0.988i)T \) |
| 3 | \( 1 + (0.478 - 0.877i)T \) |
| 7 | \( 1 + (-0.0402 - 0.999i)T \) |
| 11 | \( 1 + (0.840 + 0.541i)T \) |
| 17 | \( 1 + (-0.832 - 0.554i)T \) |
| 19 | \( 1 + (-0.994 - 0.104i)T \) |
| 23 | \( 1 + (-0.207 + 0.978i)T \) |
| 29 | \( 1 + (0.892 - 0.450i)T \) |
| 31 | \( 1 + (0.764 - 0.644i)T \) |
| 37 | \( 1 + (-0.471 - 0.881i)T \) |
| 41 | \( 1 + (-0.128 - 0.991i)T \) |
| 43 | \( 1 + (0.721 - 0.692i)T \) |
| 47 | \( 1 + (0.995 + 0.0965i)T \) |
| 53 | \( 1 + (-0.144 - 0.989i)T \) |
| 59 | \( 1 + (-0.945 + 0.324i)T \) |
| 61 | \( 1 + (0.247 - 0.968i)T \) |
| 67 | \( 1 + (0.953 + 0.301i)T \) |
| 71 | \( 1 + (-0.520 - 0.853i)T \) |
| 73 | \( 1 + (0.998 + 0.0483i)T \) |
| 79 | \( 1 + (-0.995 - 0.0965i)T \) |
| 83 | \( 1 + (0.0241 - 0.999i)T \) |
| 89 | \( 1 + (-0.207 + 0.978i)T \) |
| 97 | \( 1 + (-0.513 + 0.857i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.8515231994590066099111590157, −18.11473761405704748583606466515, −17.19128847240320650801463447512, −16.83048132344912767788381500036, −15.944484900011885085585223946615, −15.547248608097858108503394738453, −14.91209255578298064515502887655, −14.32971216564618534761848267488, −13.802859027694654407080904832428, −12.85880667327432743843715720352, −12.171646947547510621359158112300, −11.119651554517657208732657835958, −10.44806453839749824529783789752, −9.704015057083749213681635090198, −8.92204077466642999572606026492, −8.52458820830395531711833413278, −8.16239150573618365505239718070, −6.81218859270408982749465995973, −6.25866184411038583730540395435, −5.64047398847375048469044395203, −4.55463574209791356631124066905, −4.35814205104525040645374658190, −3.25947559054377497758753837177, −2.47452938542794575754887132607, −1.32091057382313445166688038005,
0.30600725306467287507177665667, 1.11419907629833344931255485349, 2.00079968687447133445219125116, 2.50258311850474299289433027524, 3.66525462800882824128663282673, 4.0327207952462510309212207250, 4.8977939132391614065132643553, 6.110467221842767748840428637063, 6.898915675419388439421337508634, 7.49908391481402547414553516968, 8.261629213244513163575240752761, 9.03934893688373008289998177006, 9.54212808021086951335363686610, 10.39803909943050659157948610923, 11.12249197532173780491602447754, 11.82660217605614772440398867257, 12.41299512551290790368553716809, 13.09980517178314637109526854707, 13.854485293688068826138490279078, 14.00418336197935993441015602215, 14.954370277833910275214516595583, 15.82871687176439847066797277534, 17.13601726690801076052175846122, 17.36447469797650380046383923261, 17.82495710077863480534205991007