L(s) = 1 | + (−0.989 − 0.144i)2-s + (0.527 + 0.849i)3-s + (0.958 + 0.285i)4-s + (−0.399 − 0.916i)6-s + (0.120 − 0.992i)7-s + (−0.906 − 0.421i)8-s + (−0.443 + 0.896i)9-s + (0.443 + 0.896i)11-s + (0.262 + 0.964i)12-s + (−0.262 + 0.964i)14-s + (0.836 + 0.548i)16-s + (0.906 + 0.421i)17-s + (0.568 − 0.822i)18-s + (−0.309 + 0.951i)19-s + (0.906 − 0.421i)21-s + (−0.309 − 0.951i)22-s + ⋯ |
L(s) = 1 | + (−0.989 − 0.144i)2-s + (0.527 + 0.849i)3-s + (0.958 + 0.285i)4-s + (−0.399 − 0.916i)6-s + (0.120 − 0.992i)7-s + (−0.906 − 0.421i)8-s + (−0.443 + 0.896i)9-s + (0.443 + 0.896i)11-s + (0.262 + 0.964i)12-s + (−0.262 + 0.964i)14-s + (0.836 + 0.548i)16-s + (0.906 + 0.421i)17-s + (0.568 − 0.822i)18-s + (−0.309 + 0.951i)19-s + (0.906 − 0.421i)21-s + (−0.309 − 0.951i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.455 + 0.890i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.455 + 0.890i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6604224663 + 1.079287109i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6604224663 + 1.079287109i\) |
\(L(1)\) |
\(\approx\) |
\(0.8173295694 + 0.3094409053i\) |
\(L(1)\) |
\(\approx\) |
\(0.8173295694 + 0.3094409053i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 \) |
good | 2 | \( 1 + (-0.989 - 0.144i)T \) |
| 3 | \( 1 + (0.527 + 0.849i)T \) |
| 7 | \( 1 + (0.120 - 0.992i)T \) |
| 11 | \( 1 + (0.443 + 0.896i)T \) |
| 17 | \( 1 + (0.906 + 0.421i)T \) |
| 19 | \( 1 + (-0.309 + 0.951i)T \) |
| 23 | \( 1 + (0.809 + 0.587i)T \) |
| 29 | \( 1 + (0.715 + 0.698i)T \) |
| 31 | \( 1 + (-0.399 - 0.916i)T \) |
| 37 | \( 1 + (0.215 - 0.976i)T \) |
| 41 | \( 1 + (-0.644 + 0.764i)T \) |
| 43 | \( 1 + (0.748 + 0.663i)T \) |
| 47 | \( 1 + (-0.607 + 0.794i)T \) |
| 53 | \( 1 + (-0.981 + 0.192i)T \) |
| 59 | \( 1 + (0.262 + 0.964i)T \) |
| 61 | \( 1 + (0.485 - 0.873i)T \) |
| 67 | \( 1 + (0.958 - 0.285i)T \) |
| 71 | \( 1 + (0.527 + 0.849i)T \) |
| 73 | \( 1 + (-0.443 - 0.896i)T \) |
| 79 | \( 1 + (-0.607 + 0.794i)T \) |
| 83 | \( 1 + (-0.527 + 0.849i)T \) |
| 89 | \( 1 + (0.809 + 0.587i)T \) |
| 97 | \( 1 + (0.779 - 0.626i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.39929128503481651486079080095, −17.464037522881149318442467879679, −17.133397349994040625851443645377, −16.09586876493702928238387881949, −15.5825629385437752635565650482, −14.704347188322117552087005997215, −14.33760914387572037431560386726, −13.39567475394024655538308666548, −12.56735174108904092614099291905, −11.83977220892060196769260554742, −11.48470659141137455453606686924, −10.5516353853708073702694363319, −9.60865077656775550437479098516, −8.92279975310003223075527490024, −8.540116904299293557214304606722, −7.9519354456728073681533900467, −6.97661557128960877006927161586, −6.54216736389083550319301942109, −5.7645133887718891388664160124, −5.00621766270164291048369278486, −3.42333726795627780079835535695, −2.86536022915552525712195836192, −2.17722918259330797626042564895, −1.27512591281814774334529948031, −0.488128193250000966048098351599,
1.14582604004877963151051050415, 1.78462758223217132823469955511, 2.8258112497972970179328929515, 3.62056307567109317118524523731, 4.15948619979550139637552125752, 5.12779749699693306646303360244, 6.12195683184097668162427547522, 7.01945730822367502557937051473, 7.75565716597661013011906025724, 8.13331801661182335065982926811, 9.134205242324034849969633707225, 9.72985018631214574403727225872, 10.132538487837286143194758483814, 10.89295123641351621760603051730, 11.385289436788445374302221157019, 12.44315545874164910888796600086, 13.01197314244843506751819018090, 14.23740902062084307438621167061, 14.57802964759182321847677786639, 15.26261685477812105463154236116, 16.11647928198879631049649219204, 16.64833239646324175406974136564, 17.171015479532221618731955287490, 17.74340351066199806950187079714, 18.74481872293793257391563029737