| L(s) = 1 | + (0.861 − 0.506i)2-s + (0.548 + 0.836i)3-s + (0.485 − 0.873i)4-s + (0.896 + 0.443i)6-s + (0.568 − 0.822i)7-s + (−0.0241 − 0.999i)8-s + (−0.399 + 0.916i)9-s + (−0.916 + 0.399i)11-s + (0.997 − 0.0724i)12-s + (0.0724 − 0.997i)14-s + (−0.527 − 0.849i)16-s + (−0.999 + 0.0241i)17-s + (0.120 + 0.992i)18-s + (−0.587 − 0.809i)19-s + (0.999 + 0.0241i)21-s + (−0.587 + 0.809i)22-s + ⋯ |
| L(s) = 1 | + (0.861 − 0.506i)2-s + (0.548 + 0.836i)3-s + (0.485 − 0.873i)4-s + (0.896 + 0.443i)6-s + (0.568 − 0.822i)7-s + (−0.0241 − 0.999i)8-s + (−0.399 + 0.916i)9-s + (−0.916 + 0.399i)11-s + (0.997 − 0.0724i)12-s + (0.0724 − 0.997i)14-s + (−0.527 − 0.849i)16-s + (−0.999 + 0.0241i)17-s + (0.120 + 0.992i)18-s + (−0.587 − 0.809i)19-s + (0.999 + 0.0241i)21-s + (−0.587 + 0.809i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.862 - 0.506i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4225 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.862 - 0.506i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4539137396 - 1.669589698i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.4539137396 - 1.669589698i\) |
| \(L(1)\) |
\(\approx\) |
\(1.557472150 - 0.4815797601i\) |
| \(L(1)\) |
\(\approx\) |
\(1.557472150 - 0.4815797601i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 13 | \( 1 \) |
| good | 2 | \( 1 + (0.861 - 0.506i)T \) |
| 3 | \( 1 + (0.548 + 0.836i)T \) |
| 7 | \( 1 + (0.568 - 0.822i)T \) |
| 11 | \( 1 + (-0.916 + 0.399i)T \) |
| 17 | \( 1 + (-0.999 + 0.0241i)T \) |
| 19 | \( 1 + (-0.587 - 0.809i)T \) |
| 23 | \( 1 + (-0.951 - 0.309i)T \) |
| 29 | \( 1 + (-0.215 - 0.976i)T \) |
| 31 | \( 1 + (0.896 + 0.443i)T \) |
| 37 | \( 1 + (0.715 + 0.698i)T \) |
| 41 | \( 1 + (-0.0483 + 0.998i)T \) |
| 43 | \( 1 + (0.464 - 0.885i)T \) |
| 47 | \( 1 + (-0.681 + 0.732i)T \) |
| 53 | \( 1 + (-0.331 - 0.943i)T \) |
| 59 | \( 1 + (-0.997 + 0.0724i)T \) |
| 61 | \( 1 + (0.958 - 0.285i)T \) |
| 67 | \( 1 + (-0.485 - 0.873i)T \) |
| 71 | \( 1 + (-0.548 - 0.836i)T \) |
| 73 | \( 1 + (-0.399 - 0.916i)T \) |
| 79 | \( 1 + (0.681 - 0.732i)T \) |
| 83 | \( 1 + (0.836 + 0.548i)T \) |
| 89 | \( 1 + (-0.951 - 0.309i)T \) |
| 97 | \( 1 + (-0.926 - 0.377i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.59321854409664494257526943484, −17.86561031514790382003765271931, −17.525610101969785166581630279664, −16.40826541861741453983310634839, −15.77640486876366063080544748663, −15.112509010855940917679326618252, −14.567338350013737443085644551221, −13.90784712442123749325807132905, −13.2847300971509524994985800575, −12.65276740350630938166780465061, −12.12352980821145219713659782604, −11.38382830102052690724355208690, −10.71562645113004542987147252686, −9.449890727378581328815144080522, −8.52712363654258238493370936222, −8.21980869214595393349442479343, −7.55263801494262365772053621656, −6.7397057785718668572427768513, −5.916273248885560581661884844077, −5.56291038217436726248817593222, −4.502677093951567553984205816844, −3.7638525827451817521848850002, −2.70994072363617746902746928051, −2.355968349731443951677320243214, −1.50278473317529759201188335057,
0.265610661088587973632303757123, 1.71360872879063886734083503094, 2.38199898069558370135000560917, 3.05820088645023316606998653284, 4.036037286231624703829267140501, 4.63758768458694160464347542876, 4.85441475337817398045155521753, 6.01606856468876903995504790955, 6.78709638155212905032295656890, 7.778610370355968534653260855675, 8.3153231917360181032305020573, 9.41947408630388692385653209532, 10.00490164550086416699172956196, 10.68503674272436413509105381764, 11.0737483216588180932803985465, 11.85367506587519225388278734801, 12.8806450271616601232673590574, 13.56262716775513781327797970506, 13.80197846648212830974252359985, 14.8283763118395280739937382007, 15.15263315360123008031917604624, 15.846213066343224478177323457161, 16.47411774791172351271852321157, 17.44835543313221847652452084675, 18.07387916932347450784612586041