| L(s) = 1 | + (0.0581 − 0.998i)5-s + (−0.973 + 0.230i)7-s + (−0.835 + 0.549i)11-s + (0.993 − 0.116i)13-s + (0.766 + 0.642i)17-s + (0.766 − 0.642i)19-s + (−0.973 − 0.230i)23-s + (−0.993 − 0.116i)25-s + (−0.597 + 0.802i)29-s + (0.286 + 0.957i)31-s + (0.173 + 0.984i)35-s + (−0.173 + 0.984i)37-s + (0.396 − 0.918i)41-s + (0.893 + 0.448i)43-s + (0.286 − 0.957i)47-s + ⋯ |
| L(s) = 1 | + (0.0581 − 0.998i)5-s + (−0.973 + 0.230i)7-s + (−0.835 + 0.549i)11-s + (0.993 − 0.116i)13-s + (0.766 + 0.642i)17-s + (0.766 − 0.642i)19-s + (−0.973 − 0.230i)23-s + (−0.993 − 0.116i)25-s + (−0.597 + 0.802i)29-s + (0.286 + 0.957i)31-s + (0.173 + 0.984i)35-s + (−0.173 + 0.984i)37-s + (0.396 − 0.918i)41-s + (0.893 + 0.448i)43-s + (0.286 − 0.957i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.713 - 0.700i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.713 - 0.700i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.481016769 - 0.6050619309i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.481016769 - 0.6050619309i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9773498070 - 0.1377653054i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9773498070 - 0.1377653054i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (0.0581 - 0.998i)T \) |
| 7 | \( 1 + (-0.973 + 0.230i)T \) |
| 11 | \( 1 + (-0.835 + 0.549i)T \) |
| 13 | \( 1 + (0.993 - 0.116i)T \) |
| 17 | \( 1 + (0.766 + 0.642i)T \) |
| 19 | \( 1 + (0.766 - 0.642i)T \) |
| 23 | \( 1 + (-0.973 - 0.230i)T \) |
| 29 | \( 1 + (-0.597 + 0.802i)T \) |
| 31 | \( 1 + (0.286 + 0.957i)T \) |
| 37 | \( 1 + (-0.173 + 0.984i)T \) |
| 41 | \( 1 + (0.396 - 0.918i)T \) |
| 43 | \( 1 + (0.893 + 0.448i)T \) |
| 47 | \( 1 + (0.286 - 0.957i)T \) |
| 53 | \( 1 + (0.5 - 0.866i)T \) |
| 59 | \( 1 + (-0.835 - 0.549i)T \) |
| 61 | \( 1 + (0.686 + 0.727i)T \) |
| 67 | \( 1 + (0.597 + 0.802i)T \) |
| 71 | \( 1 + (0.939 - 0.342i)T \) |
| 73 | \( 1 + (-0.939 - 0.342i)T \) |
| 79 | \( 1 + (-0.396 - 0.918i)T \) |
| 83 | \( 1 + (0.396 + 0.918i)T \) |
| 89 | \( 1 + (-0.939 - 0.342i)T \) |
| 97 | \( 1 + (-0.0581 - 0.998i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.91825667133844901566612256191, −22.06299275558503156734218042527, −21.138049220589297255065381746534, −20.386728250168435389211581823576, −19.26800006621038788774411985112, −18.610236691020570466051761841943, −18.15802754350601534061370084941, −16.8807141842541457274699214698, −15.95800275566535565846593742077, −15.56710926871757687753197405705, −14.16908378380712964612412553338, −13.7617326120199641384379659983, −12.81733536437363428412711240972, −11.6937735167347245859531683141, −10.88475567559283703579564014323, −10.039326471328245433406965484034, −9.38092939819501185668869273147, −7.93150996309568150455319441765, −7.36796551259312304453704351725, −6.06270979391606012821142038037, −5.775482267479429347735378724360, −3.97409256770122591622987759056, −3.27303211798957830444372003908, −2.36883146706648780358307105725, −0.7396026515268726198445813226,
0.55633736814925247789356864837, 1.74026649913051613820474825449, 3.05947028471119406008696296777, 4.01976129303631830588986062869, 5.23186561829307348720416974014, 5.86593068325723356202323393456, 7.0276847891665704571978591426, 8.11970227668634651070888118366, 8.87972977857141758240896698720, 9.80397944074577042549281320178, 10.520883693401301582873729776540, 11.8410812422847895609505446129, 12.62239000119417708035078275360, 13.165404062441816627977390984461, 14.04624883362669896249906663578, 15.410288987734439367758517663065, 15.96316519937532274738383601242, 16.58123217131740810907645552438, 17.67153549846517938068485401612, 18.41095899034630989582153228001, 19.376988538025648425477522408850, 20.20889821109620846883563630044, 20.80826494189073729277030327177, 21.70044002213273177214547253881, 22.61097510149486056502336112080