| L(s) = 1 | + (−0.973 + 0.230i)5-s + (−0.597 − 0.802i)7-s + (−0.686 + 0.727i)11-s + (−0.893 − 0.448i)13-s + (−0.939 − 0.342i)17-s + (−0.939 + 0.342i)19-s + (−0.597 + 0.802i)23-s + (0.893 − 0.448i)25-s + (0.835 + 0.549i)29-s + (−0.396 − 0.918i)31-s + (0.766 + 0.642i)35-s + (−0.766 + 0.642i)37-s + (−0.0581 − 0.998i)41-s + (−0.286 − 0.957i)43-s + (−0.396 + 0.918i)47-s + ⋯ |
| L(s) = 1 | + (−0.973 + 0.230i)5-s + (−0.597 − 0.802i)7-s + (−0.686 + 0.727i)11-s + (−0.893 − 0.448i)13-s + (−0.939 − 0.342i)17-s + (−0.939 + 0.342i)19-s + (−0.597 + 0.802i)23-s + (0.893 − 0.448i)25-s + (0.835 + 0.549i)29-s + (−0.396 − 0.918i)31-s + (0.766 + 0.642i)35-s + (−0.766 + 0.642i)37-s + (−0.0581 − 0.998i)41-s + (−0.286 − 0.957i)43-s + (−0.396 + 0.918i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.996 + 0.0774i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.996 + 0.0774i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5114055843 + 0.01984486567i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.5114055843 + 0.01984486567i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6065328243 + 0.01593989123i\) |
| \(L(1)\) |
\(\approx\) |
\(0.6065328243 + 0.01593989123i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (-0.973 + 0.230i)T \) |
| 7 | \( 1 + (-0.597 - 0.802i)T \) |
| 11 | \( 1 + (-0.686 + 0.727i)T \) |
| 13 | \( 1 + (-0.893 - 0.448i)T \) |
| 17 | \( 1 + (-0.939 - 0.342i)T \) |
| 19 | \( 1 + (-0.939 + 0.342i)T \) |
| 23 | \( 1 + (-0.597 + 0.802i)T \) |
| 29 | \( 1 + (0.835 + 0.549i)T \) |
| 31 | \( 1 + (-0.396 - 0.918i)T \) |
| 37 | \( 1 + (-0.766 + 0.642i)T \) |
| 41 | \( 1 + (-0.0581 - 0.998i)T \) |
| 43 | \( 1 + (-0.286 - 0.957i)T \) |
| 47 | \( 1 + (-0.396 + 0.918i)T \) |
| 53 | \( 1 + (0.5 + 0.866i)T \) |
| 59 | \( 1 + (-0.686 - 0.727i)T \) |
| 61 | \( 1 + (0.993 - 0.116i)T \) |
| 67 | \( 1 + (-0.835 + 0.549i)T \) |
| 71 | \( 1 + (-0.173 - 0.984i)T \) |
| 73 | \( 1 + (0.173 - 0.984i)T \) |
| 79 | \( 1 + (0.0581 - 0.998i)T \) |
| 83 | \( 1 + (-0.0581 + 0.998i)T \) |
| 89 | \( 1 + (0.173 - 0.984i)T \) |
| 97 | \( 1 + (0.973 + 0.230i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.696614477460129503191591244392, −21.744594746744444870604760903131, −21.247818554040509901075436984848, −19.83630030535404403728237486136, −19.509863660480844682891677724466, −18.70360689287484502857029966284, −17.81918663022263655324928146767, −16.61331630692020161851203651164, −16.02691958056348743445660138710, −15.29218263511221123146506322772, −14.51288220645948745185004273050, −13.23304362751378200794387738603, −12.55298920124667495275459827722, −11.7910079791743422114793252878, −10.910661787171893235490520229952, −9.929936375448331625209549005735, −8.66425401025705138805459348278, −8.38936361026259283504109504590, −7.062437891464203160875021368636, −6.26658883279954250651988476572, −5.06484122096741927523241596048, −4.22220612816705321197267879980, −3.049932632546950725191749150061, −2.17060916953438441825053246419, −0.32023828031815510796728351011,
0.36472047721226779641622567204, 2.121738993832751913405532773789, 3.22614449305689144994963832702, 4.185321832825236511975805598810, 4.975592329013544467727022541832, 6.42034929875409226278463342309, 7.304060709596091753583627771943, 7.81695441449639361466589114251, 9.018312551386405814697210218661, 10.19940483454245907296129248900, 10.633137524268632025825252543192, 11.82302264044621258320644708169, 12.58311524118500372295661878374, 13.37402227497589998644521178678, 14.4341314255387738749238592504, 15.39611290351185614597619100866, 15.83200743842195608322348233707, 16.93668422773048826917996520056, 17.659102716134761275207126552472, 18.69329392423995611427035283537, 19.560422144478472928700698778118, 20.06345323655646780911483812878, 20.82594603339068488531997097891, 22.209758066065250238135791035051, 22.595819689983879822872295992470