| L(s) = 1 | + (−0.974 + 0.222i)2-s + (0.900 − 0.433i)4-s + (0.866 − 0.5i)7-s + (−0.781 + 0.623i)8-s + (0.900 + 0.433i)11-s + (−0.930 − 0.365i)13-s + (−0.733 + 0.680i)14-s + (0.623 − 0.781i)16-s + (−0.149 + 0.988i)17-s + (−0.0747 + 0.997i)19-s + (−0.974 − 0.222i)22-s + (0.563 + 0.826i)23-s + (0.988 + 0.149i)26-s + (0.563 − 0.826i)28-s + (−0.733 + 0.680i)29-s + ⋯ |
| L(s) = 1 | + (−0.974 + 0.222i)2-s + (0.900 − 0.433i)4-s + (0.866 − 0.5i)7-s + (−0.781 + 0.623i)8-s + (0.900 + 0.433i)11-s + (−0.930 − 0.365i)13-s + (−0.733 + 0.680i)14-s + (0.623 − 0.781i)16-s + (−0.149 + 0.988i)17-s + (−0.0747 + 0.997i)19-s + (−0.974 − 0.222i)22-s + (0.563 + 0.826i)23-s + (0.988 + 0.149i)26-s + (0.563 − 0.826i)28-s + (−0.733 + 0.680i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 645 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.601 + 0.798i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 645 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.601 + 0.798i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8583960738 + 0.4281501960i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.8583960738 + 0.4281501960i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7789153299 + 0.1422091183i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7789153299 + 0.1422091183i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 43 | \( 1 \) |
| good | 2 | \( 1 + (-0.974 + 0.222i)T \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.900 + 0.433i)T \) |
| 13 | \( 1 + (-0.930 - 0.365i)T \) |
| 17 | \( 1 + (-0.149 + 0.988i)T \) |
| 19 | \( 1 + (-0.0747 + 0.997i)T \) |
| 23 | \( 1 + (0.563 + 0.826i)T \) |
| 29 | \( 1 + (-0.733 + 0.680i)T \) |
| 31 | \( 1 + (0.955 + 0.294i)T \) |
| 37 | \( 1 + (-0.866 - 0.5i)T \) |
| 41 | \( 1 + (0.222 + 0.974i)T \) |
| 47 | \( 1 + (0.433 + 0.900i)T \) |
| 53 | \( 1 + (-0.930 + 0.365i)T \) |
| 59 | \( 1 + (0.623 - 0.781i)T \) |
| 61 | \( 1 + (0.955 - 0.294i)T \) |
| 67 | \( 1 + (0.997 + 0.0747i)T \) |
| 71 | \( 1 + (-0.826 - 0.563i)T \) |
| 73 | \( 1 + (-0.930 - 0.365i)T \) |
| 79 | \( 1 + (0.5 + 0.866i)T \) |
| 83 | \( 1 + (0.680 - 0.733i)T \) |
| 89 | \( 1 + (-0.733 - 0.680i)T \) |
| 97 | \( 1 + (0.433 - 0.900i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.447168159019413447559746501, −21.85713663794342250766616330343, −20.90655965711384493713732571601, −20.32245808412319977785871337520, −19.18444736839220531392394948498, −18.86192616002823677195589260630, −17.663971336003813237641921276082, −17.25695997871862627262949824809, −16.35232914442103467070952809669, −15.35253484228091289277937975018, −14.64287067750667378150909395563, −13.59763612658422174357391512014, −12.249416087576385559123686172951, −11.65203840136472127227167572272, −11.035284434327826856799850059341, −9.8609526352121242182144816048, −9.038787860608387418902504455191, −8.44837843452052203457756685782, −7.30388529871549291266498789962, −6.64111312990257119406283214475, −5.34275183857442756229838826895, −4.24895452512759619966827178979, −2.80465599736584211373404912612, −2.0468130095789201915835067699, −0.72928046907696686077822447720,
1.24062446610595607084687927908, 1.9693521946668929263206769613, 3.458673154711515814863197333176, 4.70290402559512880143673134425, 5.77636615132462479084086040567, 6.86168146486423814829799256339, 7.62591768834762903854651149130, 8.376196286036434773893746403224, 9.39660505590370024987050614557, 10.20153373445236689689324585443, 11.00641584414944294154601714312, 11.8642557786966821146892048092, 12.73802138879969575709938576296, 14.296932079522917879088713418021, 14.68018487811725576424598094848, 15.571451255261026324672154675532, 16.745349004091526941565208495488, 17.33463510931702967686109322987, 17.75448566539739365166237170118, 18.98780362192930103232893272465, 19.595651405613346485241047670754, 20.38867608836444387090825270786, 21.11215137772337598605877108666, 22.12422071715002935554865519570, 23.24180062249335278567513060960