| L(s) = 1 | + (0.900 − 0.433i)2-s + (0.623 − 0.781i)4-s + (−0.5 − 0.866i)7-s + (0.222 − 0.974i)8-s + (−0.623 − 0.781i)11-s + (−0.955 + 0.294i)13-s + (−0.826 − 0.563i)14-s + (−0.222 − 0.974i)16-s + (−0.733 + 0.680i)17-s + (−0.365 − 0.930i)19-s + (−0.900 − 0.433i)22-s + (−0.988 + 0.149i)23-s + (−0.733 + 0.680i)26-s + (−0.988 − 0.149i)28-s + (0.826 + 0.563i)29-s + ⋯ |
| L(s) = 1 | + (0.900 − 0.433i)2-s + (0.623 − 0.781i)4-s + (−0.5 − 0.866i)7-s + (0.222 − 0.974i)8-s + (−0.623 − 0.781i)11-s + (−0.955 + 0.294i)13-s + (−0.826 − 0.563i)14-s + (−0.222 − 0.974i)16-s + (−0.733 + 0.680i)17-s + (−0.365 − 0.930i)19-s + (−0.900 − 0.433i)22-s + (−0.988 + 0.149i)23-s + (−0.733 + 0.680i)26-s + (−0.988 − 0.149i)28-s + (0.826 + 0.563i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 645 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.930 - 0.365i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 645 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.930 - 0.365i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2790518770 - 1.476154809i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2790518770 - 1.476154809i\) |
| \(L(1)\) |
\(\approx\) |
\(1.129867037 - 0.7693790556i\) |
| \(L(1)\) |
\(\approx\) |
\(1.129867037 - 0.7693790556i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 43 | \( 1 \) |
| good | 2 | \( 1 + (0.900 - 0.433i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 11 | \( 1 + (-0.623 - 0.781i)T \) |
| 13 | \( 1 + (-0.955 + 0.294i)T \) |
| 17 | \( 1 + (-0.733 + 0.680i)T \) |
| 19 | \( 1 + (-0.365 - 0.930i)T \) |
| 23 | \( 1 + (-0.988 + 0.149i)T \) |
| 29 | \( 1 + (0.826 + 0.563i)T \) |
| 31 | \( 1 + (0.0747 - 0.997i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
| 41 | \( 1 + (0.900 - 0.433i)T \) |
| 47 | \( 1 + (0.623 - 0.781i)T \) |
| 53 | \( 1 + (0.955 + 0.294i)T \) |
| 59 | \( 1 + (0.222 + 0.974i)T \) |
| 61 | \( 1 + (-0.0747 - 0.997i)T \) |
| 67 | \( 1 + (-0.365 - 0.930i)T \) |
| 71 | \( 1 + (-0.988 - 0.149i)T \) |
| 73 | \( 1 + (0.955 - 0.294i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (0.826 - 0.563i)T \) |
| 89 | \( 1 + (0.826 - 0.563i)T \) |
| 97 | \( 1 + (-0.623 - 0.781i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.01770080010682167414881086488, −22.58817148956087612618176236638, −21.74480885797195168299397839557, −21.01704586725246913913457608715, −20.10905935554953033461674847517, −19.31744823716611422374720935005, −18.05278527999699931896601442657, −17.50486124019296481049093789672, −16.212508826406803121247335736179, −15.78411591975209768527462930659, −14.91853963776488346850638540861, −14.19862719081881815467153144627, −13.13331513282184264592186363907, −12.344111847977625714223643083362, −11.96527981527648596828087745992, −10.60851770930636564116481107164, −9.67883817314559816216778286470, −8.51419829456729024901308819583, −7.60609179352661850173759778940, −6.72060918023831508745687541556, −5.77517850274689164642732411450, −4.9778242902816851440682368935, −4.046448069687928080140181292050, −2.70827797523735558601035712128, −2.20504575150280444052707501023,
0.48964439870852115195712151959, 2.054721976691046121776531931559, 2.98859286457993790264687822127, 4.03499800494324749616830051253, 4.78356604203633373375442044261, 5.94834701741737167939276272782, 6.74635166580226377963249032926, 7.660097065265769108191082201298, 9.00621301432549301955287927374, 10.16639787854634442434100262597, 10.65810790630850958285538710455, 11.627919674298703590831383292584, 12.56386863884867465583161249851, 13.424199632231779352263427854502, 13.86439480094660024725592486252, 14.950438833665794494654087559237, 15.747600707618046164341636134950, 16.56817302423198355193945371601, 17.48235929512836328441954596077, 18.71419949162979656036139598860, 19.61556042393186165817162680800, 19.94336800520960082441052762144, 21.024109449160432653692926889779, 21.84415825706667147835173825370, 22.32382783647167831850957902496