| L(s) = 1 | + (0.476 − 0.879i)3-s + (0.999 − 0.0160i)5-s + (−0.820 − 0.572i)7-s + (−0.545 − 0.838i)9-s + (0.390 − 0.920i)11-s + (0.953 − 0.299i)13-s + (0.462 − 0.886i)15-s + (−0.855 − 0.518i)17-s + (−0.943 + 0.330i)19-s + (−0.893 + 0.448i)21-s + (−0.740 − 0.672i)23-s + (0.999 − 0.0320i)25-s + (−0.996 + 0.0800i)27-s + (0.750 − 0.660i)29-s + (−0.490 + 0.871i)31-s + ⋯ |
| L(s) = 1 | + (0.476 − 0.879i)3-s + (0.999 − 0.0160i)5-s + (−0.820 − 0.572i)7-s + (−0.545 − 0.838i)9-s + (0.390 − 0.920i)11-s + (0.953 − 0.299i)13-s + (0.462 − 0.886i)15-s + (−0.855 − 0.518i)17-s + (−0.943 + 0.330i)19-s + (−0.893 + 0.448i)21-s + (−0.740 − 0.672i)23-s + (0.999 − 0.0320i)25-s + (−0.996 + 0.0800i)27-s + (0.750 − 0.660i)29-s + (−0.490 + 0.871i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6304 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.852 + 0.523i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6304 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.852 + 0.523i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.3549935518 - 1.256432073i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.3549935518 - 1.256432073i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9667729057 - 0.6589013751i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9667729057 - 0.6589013751i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 197 | \( 1 \) |
| good | 3 | \( 1 + (0.476 - 0.879i)T \) |
| 5 | \( 1 + (0.999 - 0.0160i)T \) |
| 7 | \( 1 + (-0.820 - 0.572i)T \) |
| 11 | \( 1 + (0.390 - 0.920i)T \) |
| 13 | \( 1 + (0.953 - 0.299i)T \) |
| 17 | \( 1 + (-0.855 - 0.518i)T \) |
| 19 | \( 1 + (-0.943 + 0.330i)T \) |
| 23 | \( 1 + (-0.740 - 0.672i)T \) |
| 29 | \( 1 + (0.750 - 0.660i)T \) |
| 31 | \( 1 + (-0.490 + 0.871i)T \) |
| 37 | \( 1 + (-0.996 - 0.0800i)T \) |
| 41 | \( 1 + (0.855 + 0.518i)T \) |
| 43 | \( 1 + (-0.920 - 0.390i)T \) |
| 47 | \( 1 + (-0.801 - 0.598i)T \) |
| 53 | \( 1 + (-0.610 - 0.791i)T \) |
| 59 | \( 1 + (0.585 - 0.810i)T \) |
| 61 | \( 1 + (0.476 + 0.879i)T \) |
| 67 | \( 1 + (-0.143 - 0.989i)T \) |
| 71 | \( 1 + (-0.838 + 0.545i)T \) |
| 73 | \( 1 + (0.761 - 0.648i)T \) |
| 79 | \( 1 + (0.695 + 0.718i)T \) |
| 83 | \( 1 + (-0.330 + 0.943i)T \) |
| 89 | \( 1 + (-0.871 + 0.490i)T \) |
| 97 | \( 1 + (0.949 + 0.315i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.837525119356322311941043614255, −17.38855955890528213264911858863, −16.63208541186150520648566369885, −15.92681408254963289400594529050, −15.480143460387305388284343067084, −14.76029329453583802021378468246, −14.215524135585720611529093394016, −13.35262691030685138245880567630, −13.03945811808247665774315525853, −12.1955685259296191666600137097, −11.245812687222954383723448213081, −10.60418583402166100689430197166, −9.95301722603046086171454832595, −9.43012740802823045868617985551, −8.84694624943000686723897233736, −8.42313997898116804351157537132, −7.208298825825567863988499622890, −6.36835674643765703005565514643, −6.009451492293706382945102628689, −5.11230152584884042582447223452, −4.342896815496225084413646046343, −3.7148911992137755127584152272, −2.863027215770310485086191692975, −2.10740391997103261544231301162, −1.60651491010515913998948516803,
0.27274138311260054234905836703, 1.1363590359285372746553304168, 1.92701919057273447697796398618, 2.68022581207674822136052347326, 3.41759268947875758639701129828, 4.04197149060031308645620289236, 5.23162890462225949144101852916, 6.1226536681637813201513094204, 6.5287503993570675352648902673, 6.84516331104285503298012666507, 8.10307950668225735938662106078, 8.55866084666010343321468701895, 9.147937799927419853402967434142, 9.93959024934466899828354475859, 10.6118693046859325991701648869, 11.27911649375774979875768906186, 12.21892122806413198807371693845, 12.92100060636996000285060011080, 13.330921182023674060396964018185, 13.943832055949521347486538995185, 14.24378004147663639744786023292, 15.21564515634084756927814896449, 16.14088829793478373491955977838, 16.56747169522962298794545713506, 17.40427632121738837267133318524