| L(s) = 1 | + (−0.206 − 0.978i)3-s + (−0.684 − 0.729i)5-s + (0.938 + 0.345i)7-s + (−0.914 + 0.404i)9-s + (−0.999 + 0.0160i)11-s + (0.984 − 0.175i)13-s + (−0.572 + 0.820i)15-s + (−0.886 − 0.462i)17-s + (−0.111 − 0.993i)19-s + (0.143 − 0.989i)21-s + (0.995 + 0.0960i)23-s + (−0.0640 + 0.997i)25-s + (0.585 + 0.810i)27-s + (0.610 − 0.791i)29-s + (0.855 + 0.518i)31-s + ⋯ |
| L(s) = 1 | + (−0.206 − 0.978i)3-s + (−0.684 − 0.729i)5-s + (0.938 + 0.345i)7-s + (−0.914 + 0.404i)9-s + (−0.999 + 0.0160i)11-s + (0.984 − 0.175i)13-s + (−0.572 + 0.820i)15-s + (−0.886 − 0.462i)17-s + (−0.111 − 0.993i)19-s + (0.143 − 0.989i)21-s + (0.995 + 0.0960i)23-s + (−0.0640 + 0.997i)25-s + (0.585 + 0.810i)27-s + (0.610 − 0.791i)29-s + (0.855 + 0.518i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6304 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.932 - 0.360i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6304 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.932 - 0.360i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.607218738 - 0.2994676458i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.607218738 - 0.2994676458i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8635201478 - 0.3712818102i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8635201478 - 0.3712818102i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 197 | \( 1 \) |
| good | 3 | \( 1 + (-0.206 - 0.978i)T \) |
| 5 | \( 1 + (-0.684 - 0.729i)T \) |
| 7 | \( 1 + (0.938 + 0.345i)T \) |
| 11 | \( 1 + (-0.999 + 0.0160i)T \) |
| 13 | \( 1 + (0.984 - 0.175i)T \) |
| 17 | \( 1 + (-0.886 - 0.462i)T \) |
| 19 | \( 1 + (-0.111 - 0.993i)T \) |
| 23 | \( 1 + (0.995 + 0.0960i)T \) |
| 29 | \( 1 + (0.610 - 0.791i)T \) |
| 31 | \( 1 + (0.855 + 0.518i)T \) |
| 37 | \( 1 + (0.585 - 0.810i)T \) |
| 41 | \( 1 + (-0.886 - 0.462i)T \) |
| 43 | \( 1 + (-0.0160 - 0.999i)T \) |
| 47 | \( 1 + (0.284 - 0.958i)T \) |
| 53 | \( 1 + (0.863 + 0.504i)T \) |
| 59 | \( 1 + (0.448 + 0.893i)T \) |
| 61 | \( 1 + (-0.206 + 0.978i)T \) |
| 67 | \( 1 + (0.879 - 0.476i)T \) |
| 71 | \( 1 + (0.404 + 0.914i)T \) |
| 73 | \( 1 + (0.159 + 0.987i)T \) |
| 79 | \( 1 + (-0.999 + 0.0320i)T \) |
| 83 | \( 1 + (0.993 + 0.111i)T \) |
| 89 | \( 1 + (0.518 + 0.855i)T \) |
| 97 | \( 1 + (-0.801 + 0.598i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.50215809216135760768132408276, −16.75711183542782393010822357112, −16.08201712636309550561430543360, −15.50809959156956079469150311733, −14.997534303534975736963042998028, −14.460400925507538947886090521419, −13.73948802529352166146709029638, −12.98065658223730875439338848896, −11.996846366542517663038247089910, −11.26178780444590786828101890444, −10.97545218175987534729295685367, −10.42962880296383755848956081423, −9.794555673139709326935021706860, −8.62877081096971883447109408704, −8.287496793997024421442503173853, −7.66796723796845732807473754504, −6.59114976499179496268233862230, −6.13631245929475399455058016048, −5.03972878836098948915163427373, −4.61417905332190590892038019530, −3.87380728514241951872979838507, −3.22459956852393063765902784439, −2.47600800668929078307655751781, −1.36203674391125909693900185601, −0.32857848160690774623182471087,
0.71709506124520673522608209805, 1.036731883945135659325744704302, 2.244583225307965995509493227718, 2.638202825626940095915797289687, 3.81305982216331780481101499259, 4.749039778529527804660437040579, 5.19428398034103413934382371224, 5.85582933945427452618268051940, 6.92607514798366872545318727302, 7.34022090864953469110155195062, 8.2524840606128697400616193922, 8.55367879026478704449975814919, 9.063824082692535468335001925846, 10.457719828001096950272444823477, 11.070387079368258310738916466467, 11.57746236603826857260898293088, 12.11644094494329801508624335101, 12.91606839234619018827012424341, 13.46653732927043995470789319038, 13.81154085313780993162207067831, 15.03094358148702408618455695059, 15.49076322641769974669355512564, 16.0033638273508355297322429784, 16.98749327100493789564528428827, 17.47943194221417410731957777337