| L(s) = 1 | − i·5-s + (0.5 − 0.866i)7-s + (−0.866 + 0.5i)11-s + (0.5 − 0.866i)17-s + (0.866 + 0.5i)19-s + (−0.5 − 0.866i)23-s − 25-s + (0.866 − 0.5i)29-s + 31-s + (−0.866 − 0.5i)35-s + (0.866 − 0.5i)37-s + (−0.5 − 0.866i)41-s + (−0.866 − 0.5i)43-s − 47-s + (−0.5 − 0.866i)49-s + ⋯ |
| L(s) = 1 | − i·5-s + (0.5 − 0.866i)7-s + (−0.866 + 0.5i)11-s + (0.5 − 0.866i)17-s + (0.866 + 0.5i)19-s + (−0.5 − 0.866i)23-s − 25-s + (0.866 − 0.5i)29-s + 31-s + (−0.866 − 0.5i)35-s + (0.866 − 0.5i)37-s + (−0.5 − 0.866i)41-s + (−0.866 − 0.5i)43-s − 47-s + (−0.5 − 0.866i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.926 - 0.376i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.926 - 0.376i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2759540339 - 1.410939840i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2759540339 - 1.410939840i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9486583728 - 0.4190239904i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9486583728 - 0.4190239904i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 - iT \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + (-0.866 + 0.5i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.866 + 0.5i)T \) |
| 23 | \( 1 + (-0.5 - 0.866i)T \) |
| 29 | \( 1 + (0.866 - 0.5i)T \) |
| 31 | \( 1 + T \) |
| 37 | \( 1 + (0.866 - 0.5i)T \) |
| 41 | \( 1 + (-0.5 - 0.866i)T \) |
| 43 | \( 1 + (-0.866 - 0.5i)T \) |
| 47 | \( 1 - T \) |
| 53 | \( 1 - iT \) |
| 59 | \( 1 + (0.866 + 0.5i)T \) |
| 61 | \( 1 + (0.866 + 0.5i)T \) |
| 67 | \( 1 + (-0.866 + 0.5i)T \) |
| 71 | \( 1 + (-0.5 + 0.866i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + T \) |
| 83 | \( 1 - iT \) |
| 89 | \( 1 + (-0.5 - 0.866i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.28441170367495022605408646524, −21.9815750038777491143111752724, −21.7425884103180143675788243755, −20.87264064267791657549111574659, −19.6569631029670186858944102515, −18.940895911931722966141197131, −18.117057260152376549369541146043, −17.70936497067856823065963220461, −16.34723456845089873229929849281, −15.48267931555432072371569118493, −14.89454945523855314040874311545, −13.97850110454367261541715229966, −13.166839823985555729709274745462, −11.928976335685306788437776463664, −11.359244968132881441418732818357, −10.393520184672681702971420626514, −9.61698668733756187385642636211, −8.29266261903023070893279950344, −7.7919951771040786855044916793, −6.527169554316098728082072211472, −5.73268065450846089895666075536, −4.7985928675369289886045725272, −3.30529361094755871894171002784, −2.68796246214526400526265347210, −1.43942616646002159506090196583,
0.35556356125147757326464795392, 1.29307513213006713205499144534, 2.564822802235910401566036177256, 3.97147374008090017720199791751, 4.81292241970828780956825311753, 5.51085785051338283670381594303, 6.921267467484338798303596133412, 7.86606370241792015971729223950, 8.433466855517333313391207593146, 9.81107864694915972647161119268, 10.228901253249842643157394692487, 11.5738450714545030860146789107, 12.21714610921544392727521188018, 13.26838170482983851693202323828, 13.861802253937247024586219564434, 14.847175270740167863513194130833, 16.084209308115119687435542738749, 16.39567956105647654516203718163, 17.53371909274965039102602017511, 18.06358148802619854078076367793, 19.2037180910321058194922077522, 20.3062408678350484678079450658, 20.60655857140818400898050695707, 21.29503660890568479547097350496, 22.62570163658096619114391530315