| L(s) = 1 | − 5-s + i·7-s − 11-s + 17-s + 19-s + 23-s + 25-s + i·29-s + i·31-s − i·35-s − 37-s − i·41-s + i·43-s + i·47-s − 49-s + ⋯ |
| L(s) = 1 | − 5-s + i·7-s − 11-s + 17-s + 19-s + 23-s + 25-s + i·29-s + i·31-s − i·35-s − 37-s − i·41-s + i·43-s + i·47-s − 49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.995 + 0.0985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.995 + 0.0985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.02747115613 + 0.5562202563i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.02747115613 + 0.5562202563i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7756988636 + 0.1759494862i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7756988636 + 0.1759494862i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 \) |
| good | 5 | \( 1 \) |
| 7 | \( 1 \) |
| 11 | \( 1 \) |
| 17 | \( 1 \) |
| 19 | \( 1 + iT \) |
| 23 | \( 1 \) |
| 29 | \( 1 \) |
| 31 | \( 1 \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 \) |
| 43 | \( 1 \) |
| 47 | \( 1 \) |
| 53 | \( 1 \) |
| 59 | \( 1 \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 \) |
| 79 | \( 1 \) |
| 83 | \( 1 \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.8278646173903733410070392037, −21.40474326870149196232607930504, −20.58229062598218805745803992343, −20.04740342031480001753320423407, −18.99408187686124432210650777950, −18.49076504094872386399942908574, −17.23533414099060888616554263812, −16.557868948925002089819530624659, −15.70056782793750521491112570712, −14.9905067087579309489349217151, −13.90903800438744715265705998097, −13.17080203670698688341025801766, −12.17106540977827813974700786539, −11.32971658193806283889136173458, −10.50408089065323883478158606261, −9.6901878809390428780521748740, −8.35968399820101081088537924202, −7.59601880945023623133883311620, −7.073280583715912876340495400720, −5.60891729450391537052332697521, −4.653974699973827619407238908839, −3.680852949762272129107121085772, −2.84507808517563351727835291361, −1.13452275350099166890953158045, −0.15786023546282091907617364100,
1.28445916509778728540685897072, 2.83675867312750567189574562861, 3.41385785710782291707818445987, 4.95429594736398676778760539479, 5.42402298175729537210340519415, 6.84477741140852289249675603626, 7.7264412053081134742897482143, 8.48517625226761065711785718048, 9.39957739465390571936498681853, 10.55332376301486640512012016374, 11.37553417986063754813625716159, 12.304628399497934688457459406855, 12.76379853934665336260831979957, 14.124558754890502463392153452124, 14.92459858815133711980503237491, 15.86280434022208181878520371157, 16.12620529315868956378804665659, 17.46993224169307902651153593496, 18.50569750422816027698194131031, 18.876729865583299211629368538256, 19.82846080101568103705798801302, 20.78387273650301819326837791101, 21.43745113314182584221299521302, 22.50285976806425865370259811946, 23.143252783250535506299311548713