| L(s) = 1 | + (−0.733 + 0.680i)2-s + (−0.733 − 0.680i)3-s + (0.0747 − 0.997i)4-s + (0.826 + 0.563i)5-s + 6-s + (0.623 + 0.781i)8-s + (0.0747 + 0.997i)9-s + (−0.988 + 0.149i)10-s + (0.0747 − 0.997i)11-s + (−0.733 + 0.680i)12-s + (−0.222 + 0.974i)13-s + (−0.222 − 0.974i)15-s + (−0.988 − 0.149i)16-s + (0.826 − 0.563i)17-s + (−0.733 − 0.680i)18-s + (−0.5 − 0.866i)19-s + ⋯ |
| L(s) = 1 | + (−0.733 + 0.680i)2-s + (−0.733 − 0.680i)3-s + (0.0747 − 0.997i)4-s + (0.826 + 0.563i)5-s + 6-s + (0.623 + 0.781i)8-s + (0.0747 + 0.997i)9-s + (−0.988 + 0.149i)10-s + (0.0747 − 0.997i)11-s + (−0.733 + 0.680i)12-s + (−0.222 + 0.974i)13-s + (−0.222 − 0.974i)15-s + (−0.988 − 0.149i)16-s + (0.826 − 0.563i)17-s + (−0.733 − 0.680i)18-s + (−0.5 − 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.947 + 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.947 + 0.318i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.02813737066 + 0.1720873786i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.02813737066 + 0.1720873786i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5911012561 + 0.06499996978i\) |
| \(L(1)\) |
\(\approx\) |
\(0.5911012561 + 0.06499996978i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 127 | \( 1 \) |
| good | 2 | \( 1 + (-0.733 + 0.680i)T \) |
| 3 | \( 1 + (-0.733 - 0.680i)T \) |
| 5 | \( 1 + (0.826 + 0.563i)T \) |
| 11 | \( 1 + (0.0747 - 0.997i)T \) |
| 13 | \( 1 + (-0.222 + 0.974i)T \) |
| 17 | \( 1 + (0.826 - 0.563i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.955 - 0.294i)T \) |
| 29 | \( 1 + (-0.900 + 0.433i)T \) |
| 31 | \( 1 + (-0.733 - 0.680i)T \) |
| 37 | \( 1 + (-0.988 - 0.149i)T \) |
| 41 | \( 1 + (-0.900 + 0.433i)T \) |
| 43 | \( 1 + (0.623 - 0.781i)T \) |
| 47 | \( 1 + (-0.988 - 0.149i)T \) |
| 53 | \( 1 + (-0.733 - 0.680i)T \) |
| 59 | \( 1 + (-0.733 - 0.680i)T \) |
| 61 | \( 1 + (0.826 + 0.563i)T \) |
| 67 | \( 1 + (0.826 - 0.563i)T \) |
| 71 | \( 1 + (-0.222 + 0.974i)T \) |
| 73 | \( 1 + (-0.733 - 0.680i)T \) |
| 79 | \( 1 + (0.365 - 0.930i)T \) |
| 83 | \( 1 + (-0.900 - 0.433i)T \) |
| 89 | \( 1 + (0.0747 + 0.997i)T \) |
| 97 | \( 1 + (-0.900 + 0.433i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.34373070400401912609896101957, −16.93775301647317757663451996836, −16.403903381228673699431655097207, −15.526711930895373811584164630453, −14.92412563291818158997361817115, −14.10400064740060392530798874786, −12.87123052794799710553337605674, −12.70168146193177958469348149464, −12.172965505767704207442144842714, −11.25513403870684979569864548157, −10.55737052046559911405008425761, −10.0526174520476128824498141390, −9.66487553940090944050277648420, −8.95530096200182725896040556165, −8.22869814376453760184364566429, −7.39219613344413384948423935146, −6.604926952717155754789234314138, −5.689660127831809053034250747639, −5.162538931113530177221827237318, −4.36648142698844697423565079997, −3.59239033335099843053657088866, −2.85154454746075501891660399318, −1.675529687484409320260165738149, −1.334538640188508038740801936208, −0.06844387305661643051575607430,
0.970161742269896888334436501532, 1.77763915695471891054942970230, 2.39413928640575868619909807814, 3.4370653559321934670280240209, 4.86279631658911307037245826950, 5.303568698518774245372852952191, 6.00313030119604002177632337001, 6.67185900232424835619427763445, 7.02973103248647053274453866832, 7.72326503575486852069470864501, 8.70696213258983434193194198450, 9.21175454328129494838402190763, 9.9800258876568192474476812988, 10.75337649454665208609073472613, 11.20809915164956372611811659129, 11.73627167448846328650467457838, 12.93389011871885132678782358162, 13.42365382298797950005753044041, 14.19507115225278216349634841678, 14.5196105365608302247241575314, 15.46503021535445140251045144952, 16.37800169960932340631374683207, 16.748106229728276145667973622778, 17.23374622916936122861069283861, 17.88714632081489321033135198334