| L(s) = 1 | + (0.365 − 0.930i)2-s + (0.456 − 0.889i)3-s + (−0.733 − 0.680i)4-s + (−0.5 + 0.866i)5-s + (−0.661 − 0.749i)6-s + (−0.900 + 0.433i)8-s + (−0.583 − 0.811i)9-s + (0.623 + 0.781i)10-s + (0.270 − 0.962i)11-s + (−0.939 + 0.342i)12-s + (0.797 − 0.603i)13-s + (0.542 + 0.840i)15-s + (0.0747 + 0.997i)16-s + (0.797 + 0.603i)17-s + (−0.969 + 0.246i)18-s − 19-s + ⋯ |
| L(s) = 1 | + (0.365 − 0.930i)2-s + (0.456 − 0.889i)3-s + (−0.733 − 0.680i)4-s + (−0.5 + 0.866i)5-s + (−0.661 − 0.749i)6-s + (−0.900 + 0.433i)8-s + (−0.583 − 0.811i)9-s + (0.623 + 0.781i)10-s + (0.270 − 0.962i)11-s + (−0.939 + 0.342i)12-s + (0.797 − 0.603i)13-s + (0.542 + 0.840i)15-s + (0.0747 + 0.997i)16-s + (0.797 + 0.603i)17-s + (−0.969 + 0.246i)18-s − 19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.899 - 0.437i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.367775157 - 0.3148681856i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.367775157 - 0.3148681856i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9248212829 - 0.6727653019i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9248212829 - 0.6727653019i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 127 | \( 1 \) |
| good | 2 | \( 1 + (0.365 - 0.930i)T \) |
| 3 | \( 1 + (0.456 - 0.889i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (0.270 - 0.962i)T \) |
| 13 | \( 1 + (0.797 - 0.603i)T \) |
| 17 | \( 1 + (0.797 + 0.603i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (-0.173 + 0.984i)T \) |
| 29 | \( 1 + (0.411 - 0.911i)T \) |
| 31 | \( 1 + (0.411 + 0.911i)T \) |
| 37 | \( 1 + (0.456 + 0.889i)T \) |
| 41 | \( 1 + (-0.173 - 0.984i)T \) |
| 43 | \( 1 + (-0.270 + 0.962i)T \) |
| 47 | \( 1 + (-0.0747 + 0.997i)T \) |
| 53 | \( 1 + (0.939 + 0.342i)T \) |
| 59 | \( 1 + (-0.411 + 0.911i)T \) |
| 61 | \( 1 + (-0.0747 + 0.997i)T \) |
| 67 | \( 1 + (-0.878 + 0.478i)T \) |
| 71 | \( 1 + (-0.939 + 0.342i)T \) |
| 73 | \( 1 + (0.988 + 0.149i)T \) |
| 79 | \( 1 + (-0.124 - 0.992i)T \) |
| 83 | \( 1 + (-0.411 + 0.911i)T \) |
| 89 | \( 1 + (-0.900 + 0.433i)T \) |
| 97 | \( 1 + (-0.318 + 0.947i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.313116378546836937312746152005, −16.68707768814066614263430454557, −16.40841296148548552604068117437, −15.7563893688982884547174596773, −15.08811386402434228167974158224, −14.65689114576044593742243317923, −13.94432132067143856283825228793, −13.27803146109416374323761883841, −12.54197998649443241827892640490, −11.979243902070128059622716244710, −11.18615069907999403510635519079, −10.18486850801512663764383822521, −9.50666479504246046773109149490, −8.90639187391606548875061293026, −8.39762835861058476210225304575, −7.81016085351191966001975767170, −6.98099436249831437689257826793, −6.20726899580148896888687601925, −5.29264930892710991581932455694, −4.751504303848997187488803513549, −4.13651836052700273220984153267, −3.74715143986165730959959024045, −2.74227592670617384583316584331, −1.702496447168375892482985153692, −0.32649452062500714598544660545,
0.9678836303531089655217222377, 1.47144648602208457315998374951, 2.620798990938139561176548665686, 3.02689390387919805556240290235, 3.68905019363619428915414228810, 4.26222708983271129649658061645, 5.70108908062607057786912979269, 6.026075950731760339980902344128, 6.72186388794027416432356537048, 7.76968798232371416085757451388, 8.315339360500325886231509082643, 8.812895426485457958405680143203, 9.849946870806978212090664832534, 10.53564620800825138066874234028, 11.110941299144973162167294403031, 11.78650428496702046143447634660, 12.246034201987016611214515629039, 13.08054511549001770906883637734, 13.68758469740215871755411247116, 14.0408222553134551195828657857, 14.991054058040411365960702307632, 15.149646348118249358981401280663, 16.21450550802511745483643662541, 17.32891940004800745698480141272, 17.83269041265565133186516139035