| L(s) = 1 | + (0.955 − 0.294i)2-s + (0.980 − 0.198i)3-s + (0.826 − 0.563i)4-s + (0.365 + 0.930i)5-s + (0.878 − 0.478i)6-s + (0.623 − 0.781i)8-s + (0.921 − 0.388i)9-s + (0.623 + 0.781i)10-s + (−0.998 − 0.0498i)11-s + (0.698 − 0.715i)12-s + (0.797 − 0.603i)13-s + (0.542 + 0.840i)15-s + (0.365 − 0.930i)16-s + (0.411 − 0.911i)17-s + (0.766 − 0.642i)18-s − 19-s + ⋯ |
| L(s) = 1 | + (0.955 − 0.294i)2-s + (0.980 − 0.198i)3-s + (0.826 − 0.563i)4-s + (0.365 + 0.930i)5-s + (0.878 − 0.478i)6-s + (0.623 − 0.781i)8-s + (0.921 − 0.388i)9-s + (0.623 + 0.781i)10-s + (−0.998 − 0.0498i)11-s + (0.698 − 0.715i)12-s + (0.797 − 0.603i)13-s + (0.542 + 0.840i)15-s + (0.365 − 0.930i)16-s + (0.411 − 0.911i)17-s + (0.766 − 0.642i)18-s − 19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(4.441575008 - 3.515109174i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(4.441575008 - 3.515109174i\) |
| \(L(1)\) |
\(\approx\) |
\(2.651126636 - 0.8704289021i\) |
| \(L(1)\) |
\(\approx\) |
\(2.651126636 - 0.8704289021i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 127 | \( 1 \) |
| good | 2 | \( 1 + (0.955 - 0.294i)T \) |
| 3 | \( 1 + (0.980 - 0.198i)T \) |
| 5 | \( 1 + (0.365 + 0.930i)T \) |
| 11 | \( 1 + (-0.998 - 0.0498i)T \) |
| 13 | \( 1 + (0.797 - 0.603i)T \) |
| 17 | \( 1 + (0.411 - 0.911i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (0.583 - 0.811i)T \) |
| 29 | \( 1 + (0.411 - 0.911i)T \) |
| 31 | \( 1 + (-0.766 - 0.642i)T \) |
| 37 | \( 1 + (-0.411 + 0.911i)T \) |
| 41 | \( 1 + (-0.878 - 0.478i)T \) |
| 43 | \( 1 + (0.661 - 0.749i)T \) |
| 47 | \( 1 + (0.733 + 0.680i)T \) |
| 53 | \( 1 + (-0.698 - 0.715i)T \) |
| 59 | \( 1 + (0.980 + 0.198i)T \) |
| 61 | \( 1 + (-0.0747 + 0.997i)T \) |
| 67 | \( 1 + (-0.173 + 0.984i)T \) |
| 71 | \( 1 + (0.995 + 0.0995i)T \) |
| 73 | \( 1 + (0.733 - 0.680i)T \) |
| 79 | \( 1 + (-0.939 + 0.342i)T \) |
| 83 | \( 1 + (-0.797 - 0.603i)T \) |
| 89 | \( 1 + (-0.222 - 0.974i)T \) |
| 97 | \( 1 + (-0.939 + 0.342i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.64010924948613066596731775630, −16.825074194658725426779529834207, −16.32569739577785178215171683836, −15.65430741310130593253009511791, −15.249304013958918511281801160912, −14.36532838204207553165017613819, −13.90343910819338664170877553153, −13.24628594039019639342630226458, −12.65591937201333576709045516077, −12.45284473828293233395055155627, −11.10911807516681840171413838142, −10.66426755326164043038264015739, −9.80252949651318452474244263283, −8.87602663947478258131876037224, −8.462587251796267413911232094657, −7.84511191594971698323545869210, −7.04401328190282749006357887873, −6.26244699981365387419763285134, −5.388427888254189596113173446044, −4.93086722298559565407634357475, −4.06159099295011877519644290734, −3.594316034543187679417627077699, −2.718509622060082169290859147889, −1.85807673853259707286959246651, −1.41274637369474750320265628218,
0.75233859005580661646553416020, 1.86682655366636166784484748660, 2.53811877495342975259270619435, 2.92565599685858004702910590713, 3.64987469304608012636539096295, 4.38772465544300126903561235164, 5.33130460461501984994178621741, 6.00257967049363599070728901838, 6.77032482261579490596055613917, 7.31384679823486669758717934415, 8.04426621893100328826996807297, 8.81854566371858806282103917827, 9.867294285534222176380205878513, 10.29945567361926658598890906775, 10.86528562926270581178738684899, 11.61757348217134581477478495922, 12.56746298712320525571861646246, 13.111635148621130442780375595381, 13.59260169936923661242771337702, 14.17015420661030468680309996015, 14.76830923597253111807914085793, 15.465652291061794242245882964551, 15.671154042298323127740799597720, 16.69592658048471239732608022065, 17.70659137620907317386615184389