| L(s) = 1 | + 2-s + (−0.661 − 0.749i)3-s + 4-s + (−0.733 + 0.680i)5-s + (−0.661 − 0.749i)6-s + 8-s + (−0.124 + 0.992i)9-s + (−0.733 + 0.680i)10-s + (0.456 + 0.889i)11-s + (−0.661 − 0.749i)12-s + (0.969 + 0.246i)13-s + (0.995 + 0.0995i)15-s + 16-s + (0.939 + 0.342i)17-s + (−0.124 + 0.992i)18-s + (0.5 − 0.866i)19-s + ⋯ |
| L(s) = 1 | + 2-s + (−0.661 − 0.749i)3-s + 4-s + (−0.733 + 0.680i)5-s + (−0.661 − 0.749i)6-s + 8-s + (−0.124 + 0.992i)9-s + (−0.733 + 0.680i)10-s + (0.456 + 0.889i)11-s + (−0.661 − 0.749i)12-s + (0.969 + 0.246i)13-s + (0.995 + 0.0995i)15-s + 16-s + (0.939 + 0.342i)17-s + (−0.124 + 0.992i)18-s + (0.5 − 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.933 - 0.358i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.933 - 0.358i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(3.119494843 - 0.5777089865i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.119494843 - 0.5777089865i\) |
| \(L(1)\) |
\(\approx\) |
\(1.699671941 - 0.1564583089i\) |
| \(L(1)\) |
\(\approx\) |
\(1.699671941 - 0.1564583089i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 127 | \( 1 \) |
| good | 2 | \( 1 + T \) |
| 3 | \( 1 + (-0.661 - 0.749i)T \) |
| 5 | \( 1 + (-0.733 + 0.680i)T \) |
| 11 | \( 1 + (0.456 + 0.889i)T \) |
| 13 | \( 1 + (0.969 + 0.246i)T \) |
| 17 | \( 1 + (0.939 + 0.342i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.0249 - 0.999i)T \) |
| 29 | \( 1 + (-0.980 - 0.198i)T \) |
| 31 | \( 1 + (0.998 - 0.0498i)T \) |
| 37 | \( 1 + (0.921 - 0.388i)T \) |
| 41 | \( 1 + (-0.921 + 0.388i)T \) |
| 43 | \( 1 + (-0.173 - 0.984i)T \) |
| 47 | \( 1 + (0.988 + 0.149i)T \) |
| 53 | \( 1 + (0.661 - 0.749i)T \) |
| 59 | \( 1 + (0.698 + 0.715i)T \) |
| 61 | \( 1 + (-0.365 + 0.930i)T \) |
| 67 | \( 1 + (-0.698 + 0.715i)T \) |
| 71 | \( 1 + (-0.853 - 0.521i)T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (-0.661 - 0.749i)T \) |
| 83 | \( 1 + (-0.797 - 0.603i)T \) |
| 89 | \( 1 + (0.955 + 0.294i)T \) |
| 97 | \( 1 + (0.995 + 0.0995i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.227614965728875634879242924508, −16.79886796782717363331788104897, −16.2105869400661199227431669047, −15.80344786746991783743300391465, −15.210584211469562676392134289333, −14.47509243578400510312937584954, −13.75728370354674280110618675405, −13.08885682615846255265094126195, −12.29816816211361786304698678932, −11.66758051755667809436584951729, −11.44691494072506573193562348493, −10.67585652047181770329814866799, −9.89035132953241857337218699384, −9.12737324789737872231163232836, −8.22322518974919110639047360227, −7.65795819466628920753520972045, −6.683837590440055675137979170810, −5.82077290160822228411801839173, −5.55871593103100331120078353365, −4.8042523079003474122414027352, −3.89950731269391321812115226593, −3.61583434419912087000512883353, −2.99114247704101375106871946273, −1.353590241331724585344597192, −0.95460102760328319659437203247,
0.76926116978189037007097927206, 1.648328971305079958428994670717, 2.46684061228517241761181857691, 3.20172976799675141543507623322, 4.11815439549729569286149150700, 4.56188595397903065589514711320, 5.5722845840785628081861486189, 6.14604109104310043101133995173, 6.8549321065574661395658351712, 7.26255032262890441275007172806, 7.90364052106512768707043806470, 8.75645189278023109034767827377, 10.09596392408246073487121224425, 10.5862270107020382406897930547, 11.32083326076147831832778333596, 11.9055523651898386757387910475, 12.14095557184525030414092056358, 13.120119164726641783508979383212, 13.51758104066167730954214005446, 14.37981424814519966065941910848, 14.90436816399526649652468083868, 15.52944818744138908633027464804, 16.32154829080714898136432417961, 16.7558957453313707369807142130, 17.624354895842372263861165444973