| L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.698 − 0.715i)3-s + (−0.5 − 0.866i)4-s + (0.623 − 0.781i)5-s + (0.270 + 0.962i)6-s + 8-s + (−0.0249 − 0.999i)9-s + (0.365 + 0.930i)10-s + (−0.318 − 0.947i)11-s + (−0.969 − 0.246i)12-s + (−0.456 + 0.889i)13-s + (−0.124 − 0.992i)15-s + (−0.5 + 0.866i)16-s + (−0.173 − 0.984i)17-s + (0.878 + 0.478i)18-s + (0.5 + 0.866i)19-s + ⋯ |
| L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.698 − 0.715i)3-s + (−0.5 − 0.866i)4-s + (0.623 − 0.781i)5-s + (0.270 + 0.962i)6-s + 8-s + (−0.0249 − 0.999i)9-s + (0.365 + 0.930i)10-s + (−0.318 − 0.947i)11-s + (−0.969 − 0.246i)12-s + (−0.456 + 0.889i)13-s + (−0.124 − 0.992i)15-s + (−0.5 + 0.866i)16-s + (−0.173 − 0.984i)17-s + (0.878 + 0.478i)18-s + (0.5 + 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.930 - 0.367i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.930 - 0.367i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2016045962 - 1.058873106i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.2016045962 - 1.058873106i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9322004889 - 0.2423943803i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9322004889 - 0.2423943803i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 127 | \( 1 \) |
| good | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (0.698 - 0.715i)T \) |
| 5 | \( 1 + (0.623 - 0.781i)T \) |
| 11 | \( 1 + (-0.318 - 0.947i)T \) |
| 13 | \( 1 + (-0.456 + 0.889i)T \) |
| 17 | \( 1 + (-0.173 - 0.984i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.995 - 0.0995i)T \) |
| 29 | \( 1 + (0.969 - 0.246i)T \) |
| 31 | \( 1 + (0.318 - 0.947i)T \) |
| 37 | \( 1 + (-0.853 + 0.521i)T \) |
| 41 | \( 1 + (-0.878 - 0.478i)T \) |
| 43 | \( 1 + (-0.173 - 0.984i)T \) |
| 47 | \( 1 + (0.900 - 0.433i)T \) |
| 53 | \( 1 + (0.969 - 0.246i)T \) |
| 59 | \( 1 + (-0.998 - 0.0498i)T \) |
| 61 | \( 1 + (0.900 + 0.433i)T \) |
| 67 | \( 1 + (-0.456 + 0.889i)T \) |
| 71 | \( 1 + (0.995 + 0.0995i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (-0.969 - 0.246i)T \) |
| 83 | \( 1 + (-0.0249 - 0.999i)T \) |
| 89 | \( 1 + (-0.988 - 0.149i)T \) |
| 97 | \( 1 + (-0.124 - 0.992i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.83317087451789036700727121568, −17.607710748452687392884210937015, −16.84533060438819416262057011221, −15.81795226468107560952791136388, −15.37554338168399924274312885460, −14.620664229070543807546880313318, −13.94064534142649710560058888571, −13.41974549152357251574068764312, −12.6420078458229797224394841055, −12.043089101954451874523218209365, −10.92024371949619203357259221647, −10.60581106192225746301109888114, −9.90765591420304160858009243175, −9.70275399955623437045176737018, −8.74133162466605992298061946630, −8.14075175875374717360438454189, −7.42848863390725731076603815065, −6.76998167979459113086206600255, −5.55001459922863608135262975090, −4.84749067837743376709215616721, −4.140697722529111440666234136266, −3.22875178550399653925643822968, −2.79102612973894974826652411607, −2.12401004813678849760328769401, −1.40786254538626586894902065664,
0.28228584319793960835381435085, 1.106187156959804617907091886821, 1.90766572475519284653606202685, 2.56572156246097793802177682228, 3.76271850565812874697977482361, 4.54714147600783140548453410856, 5.46764156516605146522877719794, 5.9387652710471051895565785972, 6.73211700342901520700023574938, 7.33443668349275611888177513504, 8.152385115359811708389543127581, 8.60773601961251632915220121267, 9.12958728990568126304403812322, 9.9019402158726563255631572096, 10.306536959099283759329864975274, 11.807375858960048081126428339729, 11.97424070308061045330814653939, 13.17480477286561638054211957630, 13.68513995715939024682561574774, 14.00134789904389965509534891381, 14.55736529331004392207560673504, 15.68538650689726305307026281979, 15.9758885827788764165131095888, 16.87605825446004110694553097299, 17.20911205803925378607642896329