| L(s) = 1 | + (0.365 + 0.930i)2-s + (0.980 + 0.198i)3-s + (−0.733 + 0.680i)4-s + (−0.733 + 0.680i)5-s + (0.173 + 0.984i)6-s + (−0.900 − 0.433i)8-s + (0.921 + 0.388i)9-s + (−0.900 − 0.433i)10-s + (−0.998 + 0.0498i)11-s + (−0.853 + 0.521i)12-s + (−0.980 − 0.198i)13-s + (−0.853 + 0.521i)15-s + (0.0747 − 0.997i)16-s + (0.797 − 0.603i)17-s + (−0.0249 + 0.999i)18-s − 19-s + ⋯ |
| L(s) = 1 | + (0.365 + 0.930i)2-s + (0.980 + 0.198i)3-s + (−0.733 + 0.680i)4-s + (−0.733 + 0.680i)5-s + (0.173 + 0.984i)6-s + (−0.900 − 0.433i)8-s + (0.921 + 0.388i)9-s + (−0.900 − 0.433i)10-s + (−0.998 + 0.0498i)11-s + (−0.853 + 0.521i)12-s + (−0.980 − 0.198i)13-s + (−0.853 + 0.521i)15-s + (0.0747 − 0.997i)16-s + (0.797 − 0.603i)17-s + (−0.0249 + 0.999i)18-s − 19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.357 + 0.933i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.357 + 0.933i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.367874639 + 0.9410386052i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.367874639 + 0.9410386052i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9731452900 + 0.7081651633i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9731452900 + 0.7081651633i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 127 | \( 1 \) |
| good | 2 | \( 1 + (0.365 + 0.930i)T \) |
| 3 | \( 1 + (0.980 + 0.198i)T \) |
| 5 | \( 1 + (-0.733 + 0.680i)T \) |
| 11 | \( 1 + (-0.998 + 0.0498i)T \) |
| 13 | \( 1 + (-0.980 - 0.198i)T \) |
| 17 | \( 1 + (0.797 - 0.603i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (0.661 - 0.749i)T \) |
| 29 | \( 1 + (-0.456 + 0.889i)T \) |
| 31 | \( 1 + (-0.980 - 0.198i)T \) |
| 37 | \( 1 + (-0.969 - 0.246i)T \) |
| 41 | \( 1 + (0.998 - 0.0498i)T \) |
| 43 | \( 1 + (-0.270 - 0.962i)T \) |
| 47 | \( 1 + (-0.826 - 0.563i)T \) |
| 53 | \( 1 + (0.853 + 0.521i)T \) |
| 59 | \( 1 + (-0.0249 + 0.999i)T \) |
| 61 | \( 1 + (0.733 - 0.680i)T \) |
| 67 | \( 1 + (0.998 + 0.0498i)T \) |
| 71 | \( 1 + (-0.318 - 0.947i)T \) |
| 73 | \( 1 + (0.988 - 0.149i)T \) |
| 79 | \( 1 + (0.698 + 0.715i)T \) |
| 83 | \( 1 + (-0.797 + 0.603i)T \) |
| 89 | \( 1 + (-0.222 + 0.974i)T \) |
| 97 | \( 1 + (-0.124 + 0.992i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.62886289953293926153775591203, −16.97152365293956140675724376779, −16.00295756507564530456233479598, −15.33840817593595160217006362692, −14.7602633361070121583209821038, −14.323656106216749679149228649, −13.28984300602447799920289023395, −12.85102524897467331432673431242, −12.57181394577108822737104045742, −11.69952670112928989563104663273, −11.03262384429336417548566708826, −10.15026852063874481865229991590, −9.648275084488805347117815432630, −8.92743483373266287285246984216, −8.2497394607634514486763020313, −7.75267551699086814928976152452, −6.96785154742231300906096127880, −5.77936984438505681119494428545, −5.03845385543231455983228109247, −4.42766239470724482300705311926, −3.67752702375290220274600600293, −3.13958520568012521740980989207, −2.251014454989867988180374639189, −1.67869498798900278601952490080, −0.68026504059434045132718985878,
0.442674959447481408669705078815, 2.201219423843766671379191544034, 2.76952885214436828501723454460, 3.47780594938409793378612252357, 4.06714638212085209655672884774, 4.970979244683657646394383064108, 5.37935444251099240145499669096, 6.65631992904720750281080005820, 7.231207100272610455637911418778, 7.59253764689594607872736262287, 8.30697134039431494478913649946, 8.87159678700718916633917619460, 9.726170035179140828504472223543, 10.40732854827396430034859402009, 11.05597967020781239778655185953, 12.359585961480461712605122191613, 12.53289005940735555796166314630, 13.36759067080815361045954075354, 14.16605733077082435308838352788, 14.62838414671772067908267139479, 15.12462972895191797127663415497, 15.547789573626696349841761807973, 16.40383515765520720017649824159, 16.750382259845042210980761491253, 17.8906549242757263165670489074