L(s) = 1 | + (−0.222 − 0.974i)2-s + (−0.939 + 0.342i)3-s + (−0.900 + 0.433i)4-s + (−0.988 − 0.149i)5-s + (0.542 + 0.840i)6-s + (0.623 + 0.781i)8-s + (0.766 − 0.642i)9-s + (0.0747 + 0.997i)10-s + (0.173 + 0.984i)11-s + (0.698 − 0.715i)12-s + (−0.878 + 0.478i)13-s + (0.980 − 0.198i)15-s + (0.623 − 0.781i)16-s + (0.969 − 0.246i)17-s + (−0.797 − 0.603i)18-s + (0.5 − 0.866i)19-s + ⋯ |
L(s) = 1 | + (−0.222 − 0.974i)2-s + (−0.939 + 0.342i)3-s + (−0.900 + 0.433i)4-s + (−0.988 − 0.149i)5-s + (0.542 + 0.840i)6-s + (0.623 + 0.781i)8-s + (0.766 − 0.642i)9-s + (0.0747 + 0.997i)10-s + (0.173 + 0.984i)11-s + (0.698 − 0.715i)12-s + (−0.878 + 0.478i)13-s + (0.980 − 0.198i)15-s + (0.623 − 0.781i)16-s + (0.969 − 0.246i)17-s + (−0.797 − 0.603i)18-s + (0.5 − 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.880 - 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.880 - 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1255589347 - 0.4983049339i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1255589347 - 0.4983049339i\) |
\(L(1)\) |
\(\approx\) |
\(0.4975038211 - 0.2224188216i\) |
\(L(1)\) |
\(\approx\) |
\(0.4975038211 - 0.2224188216i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 127 | \( 1 \) |
good | 2 | \( 1 + (-0.222 - 0.974i)T \) |
| 3 | \( 1 + (-0.939 + 0.342i)T \) |
| 5 | \( 1 + (-0.988 - 0.149i)T \) |
| 11 | \( 1 + (0.173 + 0.984i)T \) |
| 13 | \( 1 + (-0.878 + 0.478i)T \) |
| 17 | \( 1 + (0.969 - 0.246i)T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
| 23 | \( 1 + (0.583 - 0.811i)T \) |
| 29 | \( 1 + (-0.921 + 0.388i)T \) |
| 31 | \( 1 + (-0.542 - 0.840i)T \) |
| 37 | \( 1 + (0.542 - 0.840i)T \) |
| 41 | \( 1 + (0.853 - 0.521i)T \) |
| 43 | \( 1 + (0.853 - 0.521i)T \) |
| 47 | \( 1 + (-0.0747 - 0.997i)T \) |
| 53 | \( 1 + (-0.698 - 0.715i)T \) |
| 59 | \( 1 + (-0.411 + 0.911i)T \) |
| 61 | \( 1 + (0.733 - 0.680i)T \) |
| 67 | \( 1 + (0.969 + 0.246i)T \) |
| 71 | \( 1 + (-0.411 - 0.911i)T \) |
| 73 | \( 1 + (0.733 + 0.680i)T \) |
| 79 | \( 1 + (-0.318 + 0.947i)T \) |
| 83 | \( 1 + (0.173 + 0.984i)T \) |
| 89 | \( 1 + (-0.5 + 0.866i)T \) |
| 97 | \( 1 + (-0.411 - 0.911i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.77949426247825975820519742895, −17.12291850003603906070157787594, −16.61451128391560788957157835339, −16.073362540347399717692755110557, −15.57374978457831420580809005466, −14.63361508440721778019628256903, −14.32978757356007318736451380858, −13.290291853702452735956676764715, −12.66853773102646037220156027181, −12.097429180239797309812826130867, −11.27332657730313222844600501056, −10.77335801665500235953618061823, −9.919820081238387722566542369531, −9.30660191025685840651232002304, −8.22159224943875014954507273283, −7.661710601499425240536650520394, −7.43863323541419083162476364034, −6.46770088155927883447939845561, −5.81493564664574022111084722886, −5.30122829551204445338152389296, −4.552597807555728711500753453379, −3.72071192620596313380303502946, −3.0076829846056587307729213212, −1.39369982428271508027171966738, −0.8303379648821617962020260573,
0.27119649143583458695841760017, 0.96985355596118178429943853931, 2.0350717689893078849694898965, 2.87495571290077017126305609399, 3.948000485152806981929863706693, 4.18023232142879357315874121689, 5.08665381690151277248281459834, 5.419010201797260095930896996681, 6.930593230226259875567270217191, 7.263058490334193783878049979855, 7.99782203273112571186804868907, 9.1978838122120168931543140354, 9.41607672160246855161139428056, 10.17503030677075217315637583950, 11.07672421807054606364751650531, 11.29550622292513959472481244687, 12.135887555549647809874895772806, 12.49435364324806162639806389443, 12.94649802352823798444522652960, 14.1803948218551502324369032107, 14.80883220433437844787978630446, 15.4092597993632444998654607928, 16.41970456595364925122854944024, 16.717904039494042445727625202388, 17.4003370779018981551979228442