| L(s) = 1 | + (0.623 + 0.781i)2-s + (0.0747 − 0.997i)3-s + (−0.222 + 0.974i)4-s + (−0.900 + 0.433i)5-s + (0.826 − 0.563i)6-s + (−0.900 + 0.433i)8-s + (−0.988 − 0.149i)9-s + (−0.900 − 0.433i)10-s + (0.365 − 0.930i)11-s + (0.955 + 0.294i)12-s + (0.988 − 0.149i)13-s + (0.365 + 0.930i)15-s + (−0.900 − 0.433i)16-s + (0.733 − 0.680i)17-s + (−0.5 − 0.866i)18-s − 19-s + ⋯ |
| L(s) = 1 | + (0.623 + 0.781i)2-s + (0.0747 − 0.997i)3-s + (−0.222 + 0.974i)4-s + (−0.900 + 0.433i)5-s + (0.826 − 0.563i)6-s + (−0.900 + 0.433i)8-s + (−0.988 − 0.149i)9-s + (−0.900 − 0.433i)10-s + (0.365 − 0.930i)11-s + (0.955 + 0.294i)12-s + (0.988 − 0.149i)13-s + (0.365 + 0.930i)15-s + (−0.900 − 0.433i)16-s + (0.733 − 0.680i)17-s + (−0.5 − 0.866i)18-s − 19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.213 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.213 - 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6643128055 - 0.8248745056i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.6643128055 - 0.8248745056i\) |
| \(L(1)\) |
\(\approx\) |
\(1.103680975 + 0.07380522428i\) |
| \(L(1)\) |
\(\approx\) |
\(1.103680975 + 0.07380522428i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 127 | \( 1 \) |
| good | 2 | \( 1 + (0.623 + 0.781i)T \) |
| 3 | \( 1 + (0.0747 - 0.997i)T \) |
| 5 | \( 1 + (-0.900 + 0.433i)T \) |
| 11 | \( 1 + (0.365 - 0.930i)T \) |
| 13 | \( 1 + (0.988 - 0.149i)T \) |
| 17 | \( 1 + (0.733 - 0.680i)T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 + (0.733 + 0.680i)T \) |
| 29 | \( 1 + (0.733 - 0.680i)T \) |
| 31 | \( 1 + (0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.733 + 0.680i)T \) |
| 41 | \( 1 + (-0.826 - 0.563i)T \) |
| 43 | \( 1 + (-0.0747 - 0.997i)T \) |
| 47 | \( 1 + (-0.623 - 0.781i)T \) |
| 53 | \( 1 + (-0.955 + 0.294i)T \) |
| 59 | \( 1 + (0.0747 + 0.997i)T \) |
| 61 | \( 1 + (0.222 + 0.974i)T \) |
| 67 | \( 1 + (0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.733 - 0.680i)T \) |
| 73 | \( 1 + (-0.623 + 0.781i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.988 - 0.149i)T \) |
| 89 | \( 1 + (0.623 - 0.781i)T \) |
| 97 | \( 1 + (-0.5 + 0.866i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.76072630967247007470651167260, −17.16320479953916656894893032449, −16.18758986117218708709502665201, −15.88233696810327532919020699381, −15.0474285837511029610593742223, −14.6436209577405526622128672927, −14.117249908627498095191815935118, −12.96703062142869076373840357720, −12.59796569598694353471808894210, −11.910315040617338367915645936232, −11.18841550166518074058410559277, −10.71211001021437003564614418264, −10.08065038100544392794325441770, −9.33853286972137716423653227266, −8.57152324938600894036038433576, −8.25020434397398761150485967010, −6.8722498386585872427140698412, −6.2627888976339450659322629490, −5.30281135877981641906233391767, −4.550989156120972332824337491078, −4.364382954840554959703556080134, −3.39789300097880150645918576138, −3.107625309634011083519958605609, −1.83793054049292726576525743181, −1.1100657074055028836610450289,
0.23379753507955939819800075736, 1.19479588278161314283922850973, 2.46692819920743640955813931699, 3.241901604638963060622121036677, 3.606918559407318823133200273771, 4.541513363128900990101635631802, 5.52832915856719855055787067486, 6.105260504382534342956332084786, 6.76147460629503126698354956201, 7.25017644162266768145042462977, 8.09363498926145868828587447412, 8.43432063598571099291807763904, 9.02729048029253469006439274376, 10.35850398323289657804791464841, 11.30907439003751601162980392797, 11.689523962324237044011844727822, 12.20603804254794869499301058547, 13.10957728825925888496994134002, 13.62499230172860515455639014252, 14.07595368250285717245346991311, 14.87060069522982602003327324953, 15.42818097024822050749017131026, 16.04128122744686872624762027029, 16.896426969630966970337427440629, 17.22640402303749480862854944213