| L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.826 − 0.563i)3-s + (−0.5 + 0.866i)4-s + (0.365 − 0.930i)5-s + (−0.900 − 0.433i)6-s + 8-s + (0.365 − 0.930i)9-s + (−0.988 + 0.149i)10-s + (0.365 + 0.930i)11-s + (0.0747 + 0.997i)12-s + (0.222 − 0.974i)13-s + (−0.222 − 0.974i)15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.988 + 0.149i)18-s + (0.5 + 0.866i)19-s + ⋯ |
| L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.826 − 0.563i)3-s + (−0.5 + 0.866i)4-s + (0.365 − 0.930i)5-s + (−0.900 − 0.433i)6-s + 8-s + (0.365 − 0.930i)9-s + (−0.988 + 0.149i)10-s + (0.365 + 0.930i)11-s + (0.0747 + 0.997i)12-s + (0.222 − 0.974i)13-s + (−0.222 − 0.974i)15-s + (−0.5 − 0.866i)16-s + (0.5 − 0.866i)17-s + (−0.988 + 0.149i)18-s + (0.5 + 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0457i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0457i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.04789540201 - 2.090674084i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.04789540201 - 2.090674084i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8028740207 - 0.9098440620i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8028740207 - 0.9098440620i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 127 | \( 1 \) |
| good | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.826 - 0.563i)T \) |
| 5 | \( 1 + (0.365 - 0.930i)T \) |
| 11 | \( 1 + (0.365 + 0.930i)T \) |
| 13 | \( 1 + (0.222 - 0.974i)T \) |
| 17 | \( 1 + (0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.826 - 0.563i)T \) |
| 29 | \( 1 + (0.900 - 0.433i)T \) |
| 31 | \( 1 + (0.988 - 0.149i)T \) |
| 37 | \( 1 + (0.365 - 0.930i)T \) |
| 41 | \( 1 + (-0.623 - 0.781i)T \) |
| 43 | \( 1 - T \) |
| 47 | \( 1 + (-0.0747 - 0.997i)T \) |
| 53 | \( 1 + (-0.0747 + 0.997i)T \) |
| 59 | \( 1 + (0.955 + 0.294i)T \) |
| 61 | \( 1 + (-0.826 - 0.563i)T \) |
| 67 | \( 1 + (0.733 + 0.680i)T \) |
| 71 | \( 1 + (-0.900 + 0.433i)T \) |
| 73 | \( 1 + (0.5 - 0.866i)T \) |
| 79 | \( 1 + (0.0747 + 0.997i)T \) |
| 83 | \( 1 + (0.623 + 0.781i)T \) |
| 89 | \( 1 + (0.365 - 0.930i)T \) |
| 97 | \( 1 + (-0.222 - 0.974i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.95005399856944656214114005441, −17.288888952708333838258289424103, −16.49819580509385814903072983394, −16.050469611687359727609206593921, −15.349885094796245201402299748387, −14.72412988829982248347915223249, −14.25490707365566711184842543608, −13.574212944619268123415680623018, −13.41933827661176481299008157177, −11.841865436714874146396956140215, −11.14745430782427619848510481043, −10.485563682318210658177320884108, −9.79476860740273980082371975964, −9.45086440722422828487784685039, −8.46696310820598503368334576527, −8.212238075758758526436427090554, −7.296581849991730914962205574808, −6.5324908435162413464070978228, −6.14460116120221411995274935965, −5.15892527113883720587374771167, −4.42916965269276700996391769656, −3.55439844848518678854535340298, −2.97465630038972020763059323516, −1.90706869168022713852044563487, −1.22818852013580485318510026641,
0.589045876633342560588272144537, 1.192653892692832716283581782, 1.992245294839579323173403841073, 2.566391895657342445762685548536, 3.447922263301467698064216726541, 4.13564131110298683128091037912, 4.88807504631375075761066602591, 5.78401547869791293196805642536, 6.78809561467853130725591292359, 7.6297487517044493185083181011, 8.13220438541953682735294145515, 8.64942548901380182931977762440, 9.44752274568691053524523511568, 9.95693414567685234573450708378, 10.34776207067196253115198545913, 11.82420944751383148960954584821, 12.06332639616258329570075143431, 12.599805771369903889110014456201, 13.303885409204199261120086767439, 13.85981239399818803677691875972, 14.40759456855221744169728718293, 15.44808825620754476326325211567, 16.08728652769819235950985557364, 16.910367766327643428727183997809, 17.5322154192150926299351151077