| L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.0249 + 0.999i)3-s + (−0.5 − 0.866i)4-s + (−0.222 + 0.974i)5-s + (−0.853 − 0.521i)6-s + 8-s + (−0.998 − 0.0498i)9-s + (−0.733 − 0.680i)10-s + (−0.797 − 0.603i)11-s + (0.878 − 0.478i)12-s + (0.583 − 0.811i)13-s + (−0.969 − 0.246i)15-s + (−0.5 + 0.866i)16-s + (0.939 + 0.342i)17-s + (0.542 − 0.840i)18-s + (0.5 + 0.866i)19-s + ⋯ |
| L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.0249 + 0.999i)3-s + (−0.5 − 0.866i)4-s + (−0.222 + 0.974i)5-s + (−0.853 − 0.521i)6-s + 8-s + (−0.998 − 0.0498i)9-s + (−0.733 − 0.680i)10-s + (−0.797 − 0.603i)11-s + (0.878 − 0.478i)12-s + (0.583 − 0.811i)13-s + (−0.969 − 0.246i)15-s + (−0.5 + 0.866i)16-s + (0.939 + 0.342i)17-s + (0.542 − 0.840i)18-s + (0.5 + 0.866i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.975 - 0.221i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6223 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.975 - 0.221i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.09374219143 + 0.8362582323i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.09374219143 + 0.8362582323i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4733091077 + 0.5171685061i\) |
| \(L(1)\) |
\(\approx\) |
\(0.4733091077 + 0.5171685061i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 127 | \( 1 \) |
| good | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.0249 + 0.999i)T \) |
| 5 | \( 1 + (-0.222 + 0.974i)T \) |
| 11 | \( 1 + (-0.797 - 0.603i)T \) |
| 13 | \( 1 + (0.583 - 0.811i)T \) |
| 17 | \( 1 + (0.939 + 0.342i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
| 23 | \( 1 + (-0.980 + 0.198i)T \) |
| 29 | \( 1 + (-0.878 - 0.478i)T \) |
| 31 | \( 1 + (0.797 - 0.603i)T \) |
| 37 | \( 1 + (0.456 + 0.889i)T \) |
| 41 | \( 1 + (-0.542 + 0.840i)T \) |
| 43 | \( 1 + (0.939 + 0.342i)T \) |
| 47 | \( 1 + (-0.623 - 0.781i)T \) |
| 53 | \( 1 + (-0.878 - 0.478i)T \) |
| 59 | \( 1 + (0.995 - 0.0995i)T \) |
| 61 | \( 1 + (-0.623 + 0.781i)T \) |
| 67 | \( 1 + (0.583 - 0.811i)T \) |
| 71 | \( 1 + (0.980 - 0.198i)T \) |
| 73 | \( 1 - T \) |
| 79 | \( 1 + (0.878 - 0.478i)T \) |
| 83 | \( 1 + (-0.998 - 0.0498i)T \) |
| 89 | \( 1 + (0.955 - 0.294i)T \) |
| 97 | \( 1 + (-0.969 - 0.246i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.63660332671937525313431373318, −16.7896368004246700681327145812, −16.19657016731875194866058068984, −15.640824303182894011254245807394, −14.25905069108503672798154199361, −13.85914737537280291243385361203, −13.10097116367749837008495214029, −12.58794776251599234128972080177, −12.13400978297745213285321299782, −11.4843630016863057454784053440, −10.905895308122043464397810021342, −9.918075336743818701876262407978, −9.26206487715937812754561130777, −8.70421391202315142624305137965, −7.9467369024890705167199757631, −7.54170756605377861260325311546, −6.79868517345511616901483694227, −5.66638572340073169902153665485, −5.04349967491067336570134056068, −4.23728007643918093157620597916, −3.40323135545829646023854429445, −2.52045855508641853831065331041, −1.83612008838400769526378446369, −1.16702268345907825264301065056, −0.36502968876721683880610964452,
0.76229235394748177818383157163, 2.05717452670849179972103152048, 3.17552773897410759714473530642, 3.5672430900510481830295670544, 4.47007581806464396474494072099, 5.417691624563432925431383242439, 5.93191763177415784066444777054, 6.310208886324885812822745345821, 7.6242494328137977070936665620, 7.98819690465935813971366346643, 8.4205962712943958267868040489, 9.61572010487536372096229517571, 10.05366047659423958249317854807, 10.42604679314970725669298318603, 11.21881383802328377908792290570, 11.738613766888268818480701320, 13.022992986636156100333738882505, 13.7733953403124993107200372099, 14.3104391447873801950288446507, 14.97784985682694311033284706584, 15.43318904132562785270376087917, 16.00147593404536975404098905656, 16.553619549859932011252141381257, 17.20121823527468364287760824814, 18.09533989218532469170675598593