| L(s) = 1 | + (0.857 + 0.513i)2-s + (0.472 + 0.881i)4-s + (−0.266 + 0.963i)5-s + (−0.997 − 0.0634i)7-s + (−0.0475 + 0.998i)8-s + (−0.723 + 0.690i)10-s + (−0.987 − 0.158i)11-s + (−0.444 + 0.895i)13-s + (−0.823 − 0.567i)14-s + (−0.553 + 0.832i)16-s + (−0.786 − 0.618i)17-s + (0.786 − 0.618i)19-s + (−0.975 + 0.220i)20-s + (−0.766 − 0.642i)22-s + (−0.857 − 0.513i)25-s + (−0.841 + 0.540i)26-s + ⋯ |
| L(s) = 1 | + (0.857 + 0.513i)2-s + (0.472 + 0.881i)4-s + (−0.266 + 0.963i)5-s + (−0.997 − 0.0634i)7-s + (−0.0475 + 0.998i)8-s + (−0.723 + 0.690i)10-s + (−0.987 − 0.158i)11-s + (−0.444 + 0.895i)13-s + (−0.823 − 0.567i)14-s + (−0.553 + 0.832i)16-s + (−0.786 − 0.618i)17-s + (0.786 − 0.618i)19-s + (−0.975 + 0.220i)20-s + (−0.766 − 0.642i)22-s + (−0.857 − 0.513i)25-s + (−0.841 + 0.540i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 621 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.908 - 0.417i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 621 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.908 - 0.417i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.1934160644 + 0.8833651151i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.1934160644 + 0.8833651151i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8736678591 + 0.6920021753i\) |
| \(L(1)\) |
\(\approx\) |
\(0.8736678591 + 0.6920021753i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 23 | \( 1 \) |
| good | 2 | \( 1 + (0.857 + 0.513i)T \) |
| 5 | \( 1 + (-0.266 + 0.963i)T \) |
| 7 | \( 1 + (-0.997 - 0.0634i)T \) |
| 11 | \( 1 + (-0.987 - 0.158i)T \) |
| 13 | \( 1 + (-0.444 + 0.895i)T \) |
| 17 | \( 1 + (-0.786 - 0.618i)T \) |
| 19 | \( 1 + (0.786 - 0.618i)T \) |
| 29 | \( 1 + (0.999 - 0.0317i)T \) |
| 31 | \( 1 + (-0.975 - 0.220i)T \) |
| 37 | \( 1 + (-0.580 - 0.814i)T \) |
| 41 | \( 1 + (-0.967 + 0.251i)T \) |
| 43 | \( 1 + (-0.296 + 0.954i)T \) |
| 47 | \( 1 + (0.939 + 0.342i)T \) |
| 53 | \( 1 + (-0.959 + 0.281i)T \) |
| 59 | \( 1 + (0.553 + 0.832i)T \) |
| 61 | \( 1 + (0.605 + 0.795i)T \) |
| 67 | \( 1 + (-0.630 - 0.776i)T \) |
| 71 | \( 1 + (0.327 + 0.945i)T \) |
| 73 | \( 1 + (-0.786 + 0.618i)T \) |
| 79 | \( 1 + (-0.110 + 0.993i)T \) |
| 83 | \( 1 + (0.967 + 0.251i)T \) |
| 89 | \( 1 + (-0.888 - 0.458i)T \) |
| 97 | \( 1 + (-0.902 - 0.429i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.35515059847994262615304440376, −21.91440534908196855401594496313, −20.645758123500362314148849392846, −20.30827233963428606753881470360, −19.50282779926409597886162593144, −18.697886242507611846129431489290, −17.549177884368063742664089298117, −16.389140407014568272301950807898, −15.69575237351974637881149230553, −15.17455166606401584630135887961, −13.80783769975170766999051134055, −13.07295087856613872996784591166, −12.541894962381744270320171706471, −11.85825729975732643096012176526, −10.52206039408243257876214574444, −10.00026163350662936145787242534, −8.90627976217788546646694868303, −7.78015254982813498965544165127, −6.66340389693967427408147057353, −5.5308912229212717191602820145, −4.99307148866034918908878463991, −3.79659909621298494072440474546, −2.980610434536014594225141280473, −1.78596978101213423219838203362, −0.30635522832559496183933709287,
2.42993836821716471286005042192, 2.98125098291230547936292119574, 4.01937837042218206028785165790, 5.070128546633397242895487606150, 6.15366612986900764006007906419, 7.00628061502065827852701030550, 7.43607163461655004468015064148, 8.77723777758815385087836243364, 9.88948707061748217532636967928, 10.96577645011200312545625203533, 11.702604788755312322368879897033, 12.68469392695214812124359307956, 13.58925743909795821711806549723, 14.13221750168761645580584790659, 15.226231573266242148254188321137, 15.85590284731882304655158283044, 16.425081374689350595892330248406, 17.661104138409596925016628494276, 18.43912977397772103632840317514, 19.43577668593149728430794782799, 20.19997131444732371687972855743, 21.34491678390218286198253379611, 22.07142126089898103888978597094, 22.58505325437468241306276252686, 23.4549111804372916610903553838