| L(s) = 1 | + (−0.823 − 0.567i)2-s + (0.356 + 0.934i)4-s + (0.296 − 0.954i)5-s + (−0.204 − 0.978i)7-s + (0.235 − 0.971i)8-s + (−0.786 + 0.618i)10-s + (−0.266 + 0.963i)11-s + (0.950 − 0.312i)13-s + (−0.386 + 0.922i)14-s + (−0.745 + 0.666i)16-s + (0.981 + 0.189i)17-s + (0.981 − 0.189i)19-s + (0.997 − 0.0634i)20-s + (0.766 − 0.642i)22-s + (−0.823 − 0.567i)25-s + (−0.959 − 0.281i)26-s + ⋯ |
| L(s) = 1 | + (−0.823 − 0.567i)2-s + (0.356 + 0.934i)4-s + (0.296 − 0.954i)5-s + (−0.204 − 0.978i)7-s + (0.235 − 0.971i)8-s + (−0.786 + 0.618i)10-s + (−0.266 + 0.963i)11-s + (0.950 − 0.312i)13-s + (−0.386 + 0.922i)14-s + (−0.745 + 0.666i)16-s + (0.981 + 0.189i)17-s + (0.981 − 0.189i)19-s + (0.997 − 0.0634i)20-s + (0.766 − 0.642i)22-s + (−0.823 − 0.567i)25-s + (−0.959 − 0.281i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 621 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0299 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 621 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.0299 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7282248079 - 0.7503357168i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.7282248079 - 0.7503357168i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7486802233 - 0.3802994493i\) |
| \(L(1)\) |
\(\approx\) |
\(0.7486802233 - 0.3802994493i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 23 | \( 1 \) |
| good | 2 | \( 1 + (-0.823 - 0.567i)T \) |
| 5 | \( 1 + (0.296 - 0.954i)T \) |
| 7 | \( 1 + (-0.204 - 0.978i)T \) |
| 11 | \( 1 + (-0.266 + 0.963i)T \) |
| 13 | \( 1 + (0.950 - 0.312i)T \) |
| 17 | \( 1 + (0.981 + 0.189i)T \) |
| 19 | \( 1 + (0.981 - 0.189i)T \) |
| 29 | \( 1 + (0.630 + 0.776i)T \) |
| 31 | \( 1 + (0.997 + 0.0634i)T \) |
| 37 | \( 1 + (0.0475 - 0.998i)T \) |
| 41 | \( 1 + (0.678 + 0.734i)T \) |
| 43 | \( 1 + (-0.553 - 0.832i)T \) |
| 47 | \( 1 + (-0.939 + 0.342i)T \) |
| 53 | \( 1 + (-0.142 + 0.989i)T \) |
| 59 | \( 1 + (-0.745 - 0.666i)T \) |
| 61 | \( 1 + (0.805 - 0.592i)T \) |
| 67 | \( 1 + (0.967 + 0.251i)T \) |
| 71 | \( 1 + (-0.995 + 0.0950i)T \) |
| 73 | \( 1 + (0.981 - 0.189i)T \) |
| 79 | \( 1 + (-0.999 - 0.0317i)T \) |
| 83 | \( 1 + (0.678 - 0.734i)T \) |
| 89 | \( 1 + (0.723 - 0.690i)T \) |
| 97 | \( 1 + (0.991 + 0.126i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−23.1848732838389970493010683704, −22.58894667660010301529348016712, −21.44355756538745119579350989304, −20.859736218582329481231598659590, −19.43413962270113287445151520309, −18.819632772118502331442466312185, −18.37546868126514219149233058760, −17.610535527673387746030654894993, −16.400576669500906694179221881645, −15.85808667369111229416717852295, −15.02925003029860297892658102574, −14.12549062233874231346221333887, −13.487718500920779556007938298622, −11.814355271791669932062024945778, −11.28490780057455636129875310611, −10.187849186997236305083296135420, −9.57165881491438192933757483031, −8.49312101631802830314311294891, −7.8342131085083392208163882827, −6.570292510680017653520140830403, −6.031641298047852613970062601369, −5.234270017757690729650014867059, −3.3537803831244381099333085661, −2.52399092026237623302366126559, −1.18725828209532836737494598574,
0.86277479103090848405456101947, 1.58330140772445588100428587693, 3.04612504345205472359197346486, 4.03216095353885116091544700240, 5.060079853952636328832066810829, 6.42212196425397980829349601895, 7.53198486738491576608122204675, 8.162993200948245811661071660451, 9.2538370492734127443388055720, 9.96086036522187245188811300901, 10.63509909780350820267489520378, 11.77282694053005650937192008439, 12.63104969493311403351551105008, 13.23786656615543739642598779340, 14.19132002280344048704237537399, 15.79543010006095447309936153301, 16.22028474897485543994122039819, 17.20841279392486534720044628815, 17.71402506128806608402729832387, 18.60445860142916261724657292468, 19.76426894351494755718388985041, 20.26264443033415975317039676354, 20.84654407861713174898078193770, 21.601654327578531925769235605990, 22.88868641521374185790831643106