L(s) = 1 | + (−0.996 − 0.0871i)3-s + (−0.906 + 0.422i)5-s + (−0.866 − 0.5i)7-s + (0.984 + 0.173i)9-s + (−0.965 − 0.258i)11-s + (−0.0871 − 0.996i)13-s + (0.939 − 0.342i)15-s + (−0.173 − 0.984i)17-s + (0.819 + 0.573i)21-s + (0.342 + 0.939i)23-s + (0.642 − 0.766i)25-s + (−0.965 − 0.258i)27-s + (0.819 − 0.573i)29-s + (−0.5 + 0.866i)31-s + (0.939 + 0.342i)33-s + ⋯ |
L(s) = 1 | + (−0.996 − 0.0871i)3-s + (−0.906 + 0.422i)5-s + (−0.866 − 0.5i)7-s + (0.984 + 0.173i)9-s + (−0.965 − 0.258i)11-s + (−0.0871 − 0.996i)13-s + (0.939 − 0.342i)15-s + (−0.173 − 0.984i)17-s + (0.819 + 0.573i)21-s + (0.342 + 0.939i)23-s + (0.642 − 0.766i)25-s + (−0.965 − 0.258i)27-s + (0.819 − 0.573i)29-s + (−0.5 + 0.866i)31-s + (0.939 + 0.342i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.194 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.194 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2366134872 + 0.1943129326i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2366134872 + 0.1943129326i\) |
\(L(1)\) |
\(\approx\) |
\(0.5040776438 + 0.01194768197i\) |
\(L(1)\) |
\(\approx\) |
\(0.5040776438 + 0.01194768197i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (-0.996 - 0.0871i)T \) |
| 5 | \( 1 + (-0.906 + 0.422i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.965 - 0.258i)T \) |
| 13 | \( 1 + (-0.0871 - 0.996i)T \) |
| 17 | \( 1 + (-0.173 - 0.984i)T \) |
| 23 | \( 1 + (0.342 + 0.939i)T \) |
| 29 | \( 1 + (0.819 - 0.573i)T \) |
| 31 | \( 1 + (-0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.707 + 0.707i)T \) |
| 41 | \( 1 + (-0.642 - 0.766i)T \) |
| 43 | \( 1 + (-0.906 + 0.422i)T \) |
| 47 | \( 1 + (0.173 - 0.984i)T \) |
| 53 | \( 1 + (-0.422 + 0.906i)T \) |
| 59 | \( 1 + (0.819 + 0.573i)T \) |
| 61 | \( 1 + (0.906 + 0.422i)T \) |
| 67 | \( 1 + (-0.819 + 0.573i)T \) |
| 71 | \( 1 + (-0.342 + 0.939i)T \) |
| 73 | \( 1 + (0.642 + 0.766i)T \) |
| 79 | \( 1 + (-0.766 + 0.642i)T \) |
| 83 | \( 1 + (0.965 - 0.258i)T \) |
| 89 | \( 1 + (-0.642 + 0.766i)T \) |
| 97 | \( 1 + (-0.173 - 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.927712178371763295741686993940, −22.17119653641951514568498520938, −21.36613037534990012190765017406, −20.48854561214586294365721799498, −19.3119345032837623620844077272, −18.84218178165715978347676019488, −17.93284621049533942524695989000, −16.79019986116496496615367076748, −16.26663333424742060233678578102, −15.59321837598060003678755791422, −14.79994528915140550754060182472, −13.17808501715677278082118101620, −12.606422544634202557505938013180, −11.95510166051919271738670814717, −11.018174890260125818159053119788, −10.19786646440207825762451252334, −9.163165398614851019499143804108, −8.18768720578691782848033217972, −7.03427436731488564698836761950, −6.31961852550775266800942846853, −5.192724527327814245777773246791, −4.425515112550264273780777952392, −3.39009328752864191365055827953, −1.90631180213084562127800444585, −0.24913478327138028917770782300,
0.83275461348560499062453882187, 2.7948983426407514167195018446, 3.62786142490971486877532524573, 4.84871434335607886668746295139, 5.66535282567867287488361213348, 6.90780983885119299617375756439, 7.32004268233753497852281069081, 8.41708834465681832451704379735, 9.97298807546005448102980946800, 10.45249583846926537731728042069, 11.35060974728460410850773214727, 12.14861040515649267528503584864, 13.02899819639521166412822650742, 13.74819036518114770834986685709, 15.312084165658461078288182294376, 15.76085619961452637087892906814, 16.43597202152815898566526327077, 17.47774928837593074833309780968, 18.275250164648424149267228379658, 19.01407328152100817438300659238, 19.82842012488936304053237169301, 20.73860043940211397109132941038, 21.90702374642832605465800717331, 22.5716247506297212113426683458, 23.33728719185096924448831486018