L(s) = 1 | + (0.0871 + 0.996i)3-s + (−0.422 + 0.906i)5-s + (−0.866 + 0.5i)7-s + (−0.984 + 0.173i)9-s + (−0.258 − 0.965i)11-s + (−0.996 − 0.0871i)13-s + (−0.939 − 0.342i)15-s + (−0.173 + 0.984i)17-s + (−0.573 − 0.819i)21-s + (0.342 − 0.939i)23-s + (−0.642 − 0.766i)25-s + (−0.258 − 0.965i)27-s + (−0.573 + 0.819i)29-s + (0.5 + 0.866i)31-s + (0.939 − 0.342i)33-s + ⋯ |
L(s) = 1 | + (0.0871 + 0.996i)3-s + (−0.422 + 0.906i)5-s + (−0.866 + 0.5i)7-s + (−0.984 + 0.173i)9-s + (−0.258 − 0.965i)11-s + (−0.996 − 0.0871i)13-s + (−0.939 − 0.342i)15-s + (−0.173 + 0.984i)17-s + (−0.573 − 0.819i)21-s + (0.342 − 0.939i)23-s + (−0.642 − 0.766i)25-s + (−0.258 − 0.965i)27-s + (−0.573 + 0.819i)29-s + (0.5 + 0.866i)31-s + (0.939 − 0.342i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.980 - 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.980 - 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4475777066 - 0.04423004585i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4475777066 - 0.04423004585i\) |
\(L(1)\) |
\(\approx\) |
\(0.6214010862 + 0.3379847633i\) |
\(L(1)\) |
\(\approx\) |
\(0.6214010862 + 0.3379847633i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.0871 + 0.996i)T \) |
| 5 | \( 1 + (-0.422 + 0.906i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.258 - 0.965i)T \) |
| 13 | \( 1 + (-0.996 - 0.0871i)T \) |
| 17 | \( 1 + (-0.173 + 0.984i)T \) |
| 23 | \( 1 + (0.342 - 0.939i)T \) |
| 29 | \( 1 + (-0.573 + 0.819i)T \) |
| 31 | \( 1 + (0.5 + 0.866i)T \) |
| 37 | \( 1 + (-0.707 + 0.707i)T \) |
| 41 | \( 1 + (0.642 - 0.766i)T \) |
| 43 | \( 1 + (0.422 - 0.906i)T \) |
| 47 | \( 1 + (-0.173 - 0.984i)T \) |
| 53 | \( 1 + (-0.906 + 0.422i)T \) |
| 59 | \( 1 + (0.573 + 0.819i)T \) |
| 61 | \( 1 + (0.422 + 0.906i)T \) |
| 67 | \( 1 + (-0.573 + 0.819i)T \) |
| 71 | \( 1 + (-0.342 - 0.939i)T \) |
| 73 | \( 1 + (-0.642 + 0.766i)T \) |
| 79 | \( 1 + (0.766 + 0.642i)T \) |
| 83 | \( 1 + (0.258 - 0.965i)T \) |
| 89 | \( 1 + (0.642 + 0.766i)T \) |
| 97 | \( 1 + (-0.173 + 0.984i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.983381143096964132768836986631, −22.43520252623995196895649221847, −20.88518234291351952309830233549, −20.27856925266083512297199304263, −19.47973304693454657916875124296, −19.057592893176677866305536280299, −17.71029457092529288102374316848, −17.2308320103860140150613698353, −16.28561377932796500483804059250, −15.42743833190470956135352561504, −14.34124415476807647823475477267, −13.292824079788800513493353034471, −12.83099650043539055242975481858, −12.062934448464408479119304932936, −11.2562967349813705488289234514, −9.652377956990010017958051789177, −9.31696356640113181754960742974, −7.77588704321074614011493612330, −7.48562637132333037854226264677, −6.456673727606201814974390353239, −5.271524445928506549491212916167, −4.33027176158560652199438455255, −3.03894932565020337239516729114, −1.96006826438422406435714837493, −0.685724175909480629628670050504,
0.157638223215844402259781368446, 2.479531894186618771992580387287, 3.15974769502461378523133832865, 3.97392246743991743417461008491, 5.23879811740146625928975749856, 6.13472086647243931185570358377, 7.087600549943211334767203684417, 8.376376653628644043842950849997, 9.04583895148945545170531188942, 10.32610768214042860876904259847, 10.53562363198715258619032723051, 11.685550439907646313245715812529, 12.55237107513670496071854724610, 13.78018692552740811318557656238, 14.69419579430715830633526588144, 15.25614106830896540819447607827, 16.0701975611051142489328113709, 16.7634054106437338777716487621, 17.81924047591882234244571472638, 19.154061786569759219764474597978, 19.215331850677351195061309732367, 20.3565257178847993459952536477, 21.447589144475076701779036190420, 22.11829191227231452084723987539, 22.453914913120139771852689973467